Jörg Schnecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4866080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 2014, 5, 3694.	5.8	594
2	Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 2010, 187, 843-858.	3.5	337
3	Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 2012, 93, 770-782.	1.5	228
4	Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biology and Biochemistry, 2014, 75, 143-151.	4.2	213
5	Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 2018, 139, 103-122.	1.7	203
6	Microbial processes and community composition in the rhizosphere of European beech–ÂThe influence of plant C exudates. Soil Biology and Biochemistry, 2011, 43, 551-558.	4.2	170
7	Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Science Advances, 2017, 3, e1602781.	4.7	143
8	Distinct microbial communities associated with buried soils in the Siberian tundra. ISME Journal, 2014, 8, 841-853.	4.4	137
9	Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nature Geoscience, 2018, 11, 589-593.	5.4	116
10	Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia. Global Biogeochemical Cycles, 2015, 29, 567-582.	1.9	108
11	Temperature response of permafrost soil carbon is attenuated by mineral protection. Global Change Biology, 2018, 24, 3401-3415.	4.2	107
12	Microbial physiology and soil CO ₂ efflux after 9Âyears of soil warming in a temperate forest – no indications for thermal adaptations. Global Change Biology, 2015, 21, 4265-4277.	4.2	104
13	Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia. Soil Biology and Biochemistry, 2015, 83, 106-115.	4.2	104
14	Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology and Biochemistry, 2018, 121, 212-220.	4.2	104
15	A plant–microbe interaction framework explaining nutrient effects on primary production. Nature Ecology and Evolution, 2018, 2, 1588-1596.	3.4	100
16	Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils. PLoS ONE, 2014, 9, e94076.	1.1	90
17	Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Scientific Reports, 2016, 6, 25607.	1.6	87
18	Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic. Biogeosciences, 2015, 12, 4525-4542.	1.3	85

JöRG SCHNECKER

#	Article	IF	CITATIONS
19	Nitrogen dynamics in Turbic Cryosols from Siberia and Greenland. Soil Biology and Biochemistry, 2013, 67, 85-93.	4.2	78
20	Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Frontiers in Microbiology, 2014, 5, 541.	1.5	73
21	The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biology and Biochemistry, 2015, 90, 19-29.	4.2	68
22	Properties and bioavailability of particulate and mineralâ€associated organic matter in <scp>A</scp> rctic permafrost soils, <scp>L</scp> ower <scp>K</scp> olyma <scp>R</scp> egion, <scp>R</scp> ussia. European Journal of Soil Science, 2015, 66, 722-734.	1.8	59
23	Fate of carbohydrates and lignin in north-east Siberian permafrost soils. Soil Biology and Biochemistry, 2018, 116, 311-322.	4.2	59
24	Significance of dark CO2 fixation in arctic soils. Soil Biology and Biochemistry, 2018, 119, 11-21.	4.2	58
25	Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environmental Research Letters, 2018, 13, 034002.	2.2	49
26	Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming. Soil Biology and Biochemistry, 2016, 103, 300-307.	4.2	48
27	Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency. Biogeochemistry, 2020, 151, 237-249.	1.7	33
28	A field method to store samples from temperate mountain grassland soils for analysis of phospholipid fatty acids. Soil Biology and Biochemistry, 2012, 51, 81-83.	4.2	31
29	Quantifying microbial growth and carbon use efficiency in dry soil environments via ¹⁸ 0 water vapor equilibration. Global Change Biology, 2020, 26, 5333-5341.	4.2	27
30	New insights into mechanisms driving carbon allocation in tropical forests. New Phytologist, 2015, 205, 137-146.	3.5	23
31	Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils. Biogeochemistry, 2017, 136, 261-278.	1.7	22
32	Substrate quality and concentration control decomposition and microbial strategies in a model soil system. Biogeochemistry, 2019, 144, 47-59.	1.7	22
33	Crop rotational complexity affects plant-soil nitrogen cycling during water deficit. Soil Biology and Biochemistry, 2022, 166, 108552.	4.2	15
34	Lignin Preservation and Microbial Carbohydrate Metabolism in Permafrost Soils. Journal of Geophysical Research G: Biogeosciences, 2022, 127, e2020JG006181.	1.3	5
35	Retaining eucalyptus harvest residues promotes different pathways for particulate and mineralâ€associated organic matter. Ecosphere, 2021, 12, e03439.	1.0	3
36	Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations. Soil, 2021, 7, 547-561.	2.2	3

#	Article	IF	CITATIONS
37	Agricultural management affects active carbon and nitrogen mineralisation potential in soils. Journal of Plant Nutrition and Soil Science, 2022, 185, 513-528.	1.1	3