
Lan-Qin Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4865466/publications.pdf Version: 2024-02-01

Ι α Ν-ΟιΝ Χια

#	Article	IF	CITATIONS
1	An update on precision genome editing by homology-directed repair in plants. Plant Physiology, 2022, 188, 1780-1794.	4.8	18
2	Multiplex precision gene editing by a surrogate prime editor in rice. Molecular Plant, 2022, 15, 1077-1080.	8.3	24
3	Efficient expression and function of a receptorâ€like kinase in wheat powdery mildew defence require an intronâ€located MYB binding site. Plant Biotechnology Journal, 2021, 19, 897-909.	8.3	11
4	Modification of starch composition, structure and properties through editing of <i>TaSBElla</i> in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnology Journal, 2021, 19, 937-951.	8.3	90
5	Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiplex gene editing. Molecular Plant, 2021, 14, 847-850.	8.3	33
6	Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Communications, 2021, 2, 100211.	7.7	46
7	Editorial: Targeted Genome Editing in Crops. Frontiers in Genome Editing, 2021, 3, 757916.	5.2	0
8	The power and versatility of genome editing tools in crop improvement. Journal of Integrative Plant Biology, 2021, 63, 1591-1594.	8.5	5
9	Increasing yield potential through manipulating of an <i>ARE1</i> ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. Journal of Integrative Plant Biology, 2021, 63, 1649-1663.	8.5	51
10	CRISPRâ€Cas12a enables efficient biallelic gene targeting in rice. Plant Biotechnology Journal, 2020, 18, 1351-1353.	8.3	42
11	Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. ABIOTECH, 2020, 1, 58-73.	3.9	28
12	Base editing in plants: Current status and challenges. Crop Journal, 2020, 8, 384-395.	5.2	71
13	Precise Modifications of Both Exogenous and Endogenous Genes in Rice by Prime Editing. Molecular Plant, 2020, 13, 671-674.	8.3	152
14	Toward Precision Genome Editing in Crop Plants. Molecular Plant, 2020, 13, 811-813.	8.3	36
15	A barley stripe mosaic virusâ€based guide RNA delivery system for targeted mutagenesis in wheat and maize. Molecular Plant Pathology, 2019, 20, 1463-1474.	4.2	91
16	Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nature Biotechnology, 2019, 37, 445-450.	17.5	110
17	Plant genome editing using xCas9 with expanded PAM compatibility. Journal of Genetics and Genomics, 2019, 46, 277-280.	3.9	24
18	Silencing an essential gene involved in infestation and digestion in grain aphid through plantâ€mediated <scp>RNA</scp> interference generates aphidâ€resistant wheat plants. Plant Biotechnology Journal, 2019, 17, 852-854.	8.3	38

Lan-Qin Xia

#	Article	IF	CITATIONS
19	Efficient allelic replacement in rice by gene editing: A case study of the <i>NRT1.1B</i> gene. Journal of Integrative Plant Biology, 2018, 60, 536-540.	8.5	68
20	Expanding the Scope of CRISPR/Cpf1-Mediated Genome Editing in Rice. Molecular Plant, 2018, 11, 995-998.	8.3	87
21	Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. Journal of Experimental Botany, 2018, 69, 4715-4721.	4.8	70
22	Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Molecular Plant, 2017, 10, 526-529.	8.3	272
23	Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Frontiers in Plant Science, 2017, 8, 298.	3.6	348
24	RNA Interference of the Ecdysone Receptor Genes EcR and USP in Grain Aphid (Sitobion avenae F.) Affects Its Survival and Fecundity upon Feeding on Wheat Plants. International Journal of Molecular Sciences, 2016, 17, 2098.	4.1	43
25	Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation. Frontiers in Plant Science, 2016, 7, 1324.	3.6	28
26	Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement. Frontiers in Plant Science, 2016, 7, 1928.	3.6	50
27	RNAiâ€mediated plant protection against aphids. Pest Management Science, 2016, 72, 1090-1098.	3.4	117
28	Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase. Molecular Plant, 2016, 9, 628-631.	8.3	416
29	Expressing an (<i>E</i>)â€Î²â€farnesene synthase in the chloroplast of tobacco affects the preference of green peach aphid and its parasitoid. Journal of Integrative Plant Biology, 2015, 57, 770-782.	8.5	14
30	Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation. New Phytologist, 2015, 206, 1101-1115.	7.3	26
31	Double-stranded RNA in the biological control of grain aphid (Sitobion avenae F.). Functional and Integrative Genomics, 2015, 15, 211-223.	3.5	32
32	Comparative transcriptomic analyses revealed divergences of two agriculturally important aphid species. BMC Genomics, 2014, 15, 1023.	2.8	10
33	Engineering plants for aphid resistance: current status and future perspectives. Theoretical and Applied Genetics, 2014, 127, 2065-2083.	3.6	50
34	Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. BMC Genomics, 2013, 14, 560.	2.8	54
35	Expression of an (E)- \hat{I}^2 -farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation. Crop Journal, 2013, 1, 50-60.	5.2	14
36	GM wheat development in China: current status and challenges to commercialization. Journal of Experimental Botany, 2012, 63, 1785-1790.	4.8	36

#	Article	IF	CITATIONS
37	(E)-β-Farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum). Functional and Integrative Genomics, 2012, 12, 207-213.	3.5	26
38	Metabolic Engineering of Plantâ€derived (<i>E</i>)â€Î²â€farnesene Synthase Genes for a Novel Type of Aphidâ€resistant Genetically Modified Crop Plants ^F . Journal of Integrative Plant Biology, 2012, 54, 282-299.	8.5	46