
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4865170/publications.pdf Version: 2024-02-01

LIN FENC

#	Article	IF	CITATIONS
1	Recent Advances in Fieldâ€Controlled Micro–Nano Manipulations and Micro–Nano Robots. Advanced Intelligent Systems, 2022, 4, 2100116.	3.3	39
2	Reducing the Guidewire Friction for Endovascular Interventional Surgery by Radial Micro-Vibration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1020-1031.	1.7	1
3	Transport and deposition structure of cell nano interface. , 2022, , 87-125.		0
4	Functional micro-/nanoparticles based on interfacial biotemplated fabrication. , 2022, , 309-320.		0
5	Bioinspired interfacial drag-increase structure enhancing force perception. , 2022, , 177-196.		0
6	Multi-Mode Motion Control of Reconfigurable Vortex-Shaped Microrobot Swarms for Targeted Tumor Therapy. IEEE Robotics and Automation Letters, 2022, 7, 3578-3583.	3.3	8
7	Deformable ferrofluid microrobot with omnidirectional self-adaptive mobility. Journal of Applied Physics, 2022, 131, .	1.1	15
8	Magnetically Actuated Cellâ€Robot System: Precise Control, Manipulation, and Multimode Conversion. Small, 2022, 18, e2105414.	5.2	21
9	Parallel Manipulation and Flexible Assembly of Micro-Spiral via Optoelectronic Tweezers. Frontiers in Bioengineering and Biotechnology, 2022, 10, 868821.	2.0	3
10	Emerging Potential of Exosomal Non-coding RNA in Parkinson's Disease: A Review. Frontiers in Aging Neuroscience, 2022, 14, 819836.	1.7	10
11	Auto-CSC: A Transfer Learning Based Automatic Cell Segmentation and Count Framework. Cyborg and Bionic Systems, 2022, 2022, .	3.7	10
12	Magnetically Actuated Cellâ€Robot System: Precise Control, Manipulation, and Multimode Conversion (Small 15/2022). Small, 2022, 18, .	5.2	1
13	Liquid transport with direction guidance and speed enhancement from gradient and magnetized micro-cilia surface. Applied Physics Letters, 2022, 120, .	1.5	11
14	Acoustic and magnetic hybrid actuated immune cell robot for target and kill cancer cells. , 2022, , .		1
15	Field-controlled micro-nano manipulations and micro-nano robots. , 2021, , 201-225.		1
16	Role of glucose in the repair of cell membrane damage during squeeze distortion of erythrocytes in microfluidic capillaries. Lab on A Chip, 2021, 21, 896-903.	3.1	2
17	Reduction of Erythrocyte Fluid Adaptability Due to Cell Membrane Hardening Based on Single-Cell Analysis. Biochip Journal, 2021, 15, 90-99.	2.5	1
18	A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage. Micromachines, 2021, 12, 271.	1.4	18

#	Article	IF	CITATIONS
19	Deformable ferrofluid-based millirobot with high motion accuracy and high output force. Applied Physics Letters, 2021, 118, .	1.5	29
20	Liftoff of a New Hovering Oscillating-wing Micro Aerial Vehicle. Journal of Bionic Engineering, 2021, 18, 649-661.	2.7	2
21	Precise Control of Customized Macrophage Cell Robot for Targeted Therapy of Solid Tumors with Minimal Invasion. Small, 2021, 17, e2103986.	5.2	38
22	Bone formation recovery with gold nanoparticle-induced M2 macrophage polarization in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 38, 102457.	1.7	7
23	Postoperative evaluation of tumours based on label-free acoustic separation of circulating tumour cells by microstreaming. Lab on A Chip, 2021, 21, 2721-2729.	3.1	21
24	Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers. Lab on A Chip, 2021, 21, 4379-4389.	3.1	13
25	Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution. Lab on A Chip, 2021, 21, 4760-4771.	3.1	16
26	A portable acoustofluidic device for multifunctional cell manipulation and reconstruction. , 2021, , .		2
27	Optimization of Nanoparticles for Smart Drug Delivery: A Review. Nanomaterials, 2021, 11, 2790.	1.9	18
28	Precise control of ferrofluid droplet robot in 3-D vascular model. , 2021, , .		2
29	5 DOF Capsule Endoscopy with Wi-Fi based Video Transmission Module. , 2021, , .		3
30	Non-contact Massively Parallel Manipulation of Micro-objects by Optoelectronic Tweezers*. , 2021, , .		3
31	Precise Control of Magnetized Macrophage Cell Robot for Targeted Drug Delivery. , 2021, , .		1
32	A Portable Remote Optoelectronic Tweezer System for Microobjects Manipulation. , 2021, , .		1
33	Untethered Octopusâ€Inspired Millirobot Actuated by Regular Tetrahedron Arranged Magnetic Field. Advanced Intelligent Systems, 2020, 2, 2070053.	3.3	7
34	Untethered Octopusâ€Inspired Millirobot Actuated by Regular Tetrahedron Arranged Magnetic Field. Advanced Intelligent Systems, 2020, 2, 1900148.	3.3	25
35	Magnetically Driven Bionic Millirobots with a Low-Delay Automated Actuation System for Bioparticles Manipulation. Micromachines, 2020, 11, 231.	1.4	8
36	The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. International Journal of Molecular Sciences, 2020, 21, 2480.	1.8	200

#	Article	IF	CITATIONS
37	Magnetized Cell-robot Propelled by Magnetic Field for Cancer Killing. , 2020, , .		4
38	A novel and controllable cell-based microrobot in real vascular network for target tumor therapy. , 2020, , .		2
39	Anticipating tumor metastasis by circulating tumor cells captured by acoustic microstreaming. , 2020, , .		0
40	A novel portable cell sonoporation device based on open-source acoustofluidics. , 2020, , .		2
41	The Design of 3-D Space Electromagnetic Control System for High-Precision and Fast-Response Control of Capsule Robot with 5-DOF. Lecture Notes in Computer Science, 2019, , 202-212.	1.0	6
42	A Capsule-Type Device for Soft Tissue Cutting Using a Threadless Ballscrew Actuator. , 2019, , .		2
43	On-chip rotational manipulation of microbeads and oocytes using acoustic microstreaming generated by oscillating asymmetrical microstructures. Biomicrofluidics, 2019, 13, 064103.	1.2	31
44	Cell Injection Microrobot Development and Evaluation in Microfluidic Chip. , 2019, , .		0
45	Improved Piezoelectric Sensing Performance of P(VDF–TrFE) Nanofibers by Utilizing BTO Nanoparticles and Penetrated Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 7379-7386.	4.0	100
46	Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. Minerals (Basel, Switzerland), 2019, 9, 68.	0.8	70
47	Fabrication of graphene/polyimide nanocomposite-based hair-like airflow sensor via direct inkjet printing and electrical breakdown. Smart Materials and Structures, 2019, 28, 065028.	1.8	24
48	Controlled propulsion of wheel-shape flaky microswimmers under rotating magnetic fields. Applied Physics Letters, 2019, 114, .	1.5	20
49	A Magnetically Actuated Octopus-like Robot Capable of Moving in 3D Space. , 2019, , .		6
50	On-Chip Three-dimension Cell Rotation Using Whirling Flows Generated by Oscillating Asymmetrical Microstructures. , 2019, , .		0
51	High Position Accuracy and 5 Degree Freedom Magnetic Driven Capsule Robot. , 2019, , .		3
52	A Bioinspired Flexible Film Fabricated by Surface-Tension-Assisted Replica Molding for Dynamic Control of Unidirectional Liquid Spreading. ACS Applied Materials & Interfaces, 2019, 11, 48505-48511.	4.0	6
53	Facile Fabrication of Magnetic Microrobots Based on <i>Spirulina</i> Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 4745-4756.	4.0	110
54	Development of a Tactile and Slip Sensor with a Biomimetic Structure-enhanced Sensing Mechanism. Journal of Bionic Engineering, 2019, 16, 47-55.	2.7	23

#	Article	lF	CITATIONS
55	Magnetized Cell-robot Propelled by Regular Tetrahedron Magnetic Actuation System. , 2019, , .		0
56	4 DOF High-speed Cell Manipulation Magnetic-tweezers and the Operating System Driven by Piezo Ceramics. , 2019, , .		0
57	Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers. Optical Materials, 2018, 78, 490-494.	1.7	2
58	Mechanochromic response of the barbules in peacock tail feather. Optical Materials, 2018, 75, 74-78.	1.7	9
59	On-Chip Tunable Cell Rotation Using Acoustically Oscillating Asymmetrical Microstructures. Micromachines, 2018, 9, 596.	1.4	25
60	Newly Established Three Dimensional Magnetically Controlling System. , 2018, , .		0
61	Cell Injection Microrobot Development and Evaluation in Microfluidic Chip. , 2018, , .		0
62	Cell Injection Millirobot Development and Evaluation in Microfluidic Chip. Micromachines, 2018, 9, 590.	1.4	12
63	Self-Driving 3-legged Crawling Prototype Capsule Robot with Orientation Controlled by External Magnetic Field. , 2018, , .		6
64	Electrical Breakdownâ€Induced Tunable Piezoresistivity in Graphene/Polyimide Nanocomposites for Flexible Force Sensor Applications. Advanced Materials Technologies, 2018, 3, 1800113.	3.0	12
65	Bio-inspired magnetic helical microswimmers made of nickel-plated Spirulina with enhanced propulsion velocity. Journal of Magnetism and Magnetic Materials, 2018, 468, 148-154.	1.0	51
66	Manipulating Microrobots Using Balanced Magnetic and Buoyancy Forces. Micromachines, 2018, 9, 50.	1.4	15
67	Aligned P(VDF-TrFE) Nanofibers for Enhanced Piezoelectric Directional Strain Sensing. Polymers, 2018, 10, 364.	2.0	49
68	Morphology and Mechanical Properties of Vibratory Organs in the Leaf-cutting Ant (Atta cephalotes). Journal of Bionic Engineering, 2018, 15, 722-730.	2.7	3
69	Flexible Force Sensors: Electrical Breakdown-Induced Tunable Piezoresistivity in Graphene/Polyimide Nanocomposites for Flexible Force Sensor Applications (Adv. Mater. Technol. 8/2018). Advanced Materials Technologies, 2018, 3, 1870031.	3.0	3
70	Microrobot with passive diamagnetic levitation for microparticle manipulations. Journal of Applied Physics, 2017, 122, .	1.1	23
71	On-chip microfluid induced by oscillation of microrobot for noncontact cell transportation. Applied Physics Letters, 2017, 111, .	1.5	27
72	High-precision motion of magnetic microrobot with ultrasonic levitation for 3-D rotation of single oocyte. International Journal of Robotics Research, 2016, 35, 1445-1458.	5.8	80

#	Article	IF	CITATIONS
73	Automation of an on-chip cell mechanical characterization system for stiffness evaluation. , 2015, , .		Ο
74	Three dimensional rotation of bovine oocyte by using magnetically driven on-chip robot. , 2014, , .		9
75	Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nature Communications, 2013, 4, 2276.	5.8	386
76	Accurate dispensing system for single oocytes using air ejection. Biomicrofluidics, 2013, 7, 054113.	1.2	26
77	On-Chip Enucleation of Bovine Oocytes using Microrobot-Assisted Flow-Speed Control. Micromachines, 2013, 4, 272-285.	1.4	38
78	Smooth enucleation of bovine oocyte by microrobot with local flow speed control in microchannel. , 2012, , .		5
79	Continuous enucleation of bovine oocyte by microrobot with local flow distribution control. , 2012, , .		1
80	On-Demand and Size-Controlled Production of Droplets by Magnetically Driven Microtool. Journal of Robotics and Mechatronics, 2012, 24, 133-140.	0.5	7
81	High-speed single cell dispensing system. , 2011, , .		0
82	On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations. Lab on A Chip, 2011, 11, 2049.	3.1	163
83	On-chip enucleation of oocyte by magnetically driven microtools with ultrasonic vibration. , 2011, , .		1
84	On-chip single particle loading and dispensing. , 2011, , .		8
85	High performance magnetically driven microtools with ultrasonic vibration for biomedical innovations. , 2011, , .		4
86	On-chip Particle Sorting into Multiple Channels by Magnetically Driven Microtools. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2010, 2010.5, 373-378.	0.0	0
87	On-demand and Size-controlled Production of emulsion droplets by magnetically driven microtool. , 2010, , .		3
88	On-demand Production of Emulsion Droplets Over a Wide Range of Sizes. Advanced Robotics, 2010, 24, 2005-2018.	1.1	12
89	High precision magnetically driven microtools with ultrasonic vibration for enucleation of oocytes. , 2010, , .		1
90	On-demand and size-controlled production of emulsion droplet in microfludic devices. , 2010, , .		2

#	Article	IF	CITATIONS
91	On-chip production of droplets with on-demand and size control. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2010, 2010.5, 367-372.	0.0	0
92	Formation of microdroplets utilizing hybrid magnetically driven microtool on a microfluidic chip. , 2009, , .		0
93	On-demand generation of droplet in size over a wide range by microfluidic control. , 2009, , .		Ο
94	Polymer-controlled synthesis of Fe3O4 single-crystal nanorods. Journal of Colloid and Interface Science, 2004, 278, 372-375.	5.0	38