
Carol A Rolando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Risks Associated with Glyphosate-Based Herbicide Use in Planted Forests. Forests, 2017, 8, 208.	0.9	35
2	A survey of herbicide use and a review of environmental fate in New Zealand planted forests. New Zealand Journal of Forestry Science, 2013, 43, 17.	0.8	27
3	An integrated analysis of 33 Eucalyptus trials linking the onset of competition-induced tree growth suppression with management, physiographic and climatic factors. Annals of Forest Science, 2007, 64, 585-591.	0.8	24
4	The economic costs of weeds on productive land in New Zealand. International Journal of Agricultural Sustainability, 2017, 15, 380-392.	1.3	20
5	Chemical control of two <i>Phytophthora</i> species infecting the canopy of Monterey pine (<i>Pinus) Tj ETQq1</i>	10.7843	14 ₁ gBT /Ove
6	Swath pattern analysis from a multiâ€rotor unmanned aerial vehicle configured for pesticide application. Pest Management Science, 2020, 76, 1282-1290.	1.7	18
7	Predicting the severity of <i>Cyclaneusma minus</i> on <i>Pinus radiata</i> under current climate in New Zealand. Canadian Journal of Forest Research, 2012, 42, 667-674.	0.8	17
8	Regional vegetation management standards for commercial <i>Eucalyptus</i> plantations in South Africa. Southern Forests, 2008, 70, 87-97.	0.2	15
9	Adsorption of the herbicide terbuthylazine across a range of New Zealand forestry soils. Canadian Journal of Forest Research, 2010, 40, 1448-1457.	0.8	14
10	The potential cost of environmental certification to vegetation management in plantation forests: a New Zealand case study. Canadian Journal of Forest Research, 2011, 41, 986-993.	0.8	14
11	The use of adjuvants to improve uptake of phosphorous acid applied to Pinus radiata needles for control of foliar Phytophthora diseases. New Zealand Journal of Forestry Science, 2014, 44, .	0.8	12
12	Environmental fate of terbuthylazine and hexazinone in a New Zealand planted forest Pumice soil. Forest Ecology and Management, 2015, 337, 67-76.	1.4	12
13	Using chlorophyll fluorescence to determine stress in <i>Eucalyptus grandis</i> seedlings. Southern Forests, 2003, 197, 5-12.	0.1	11
14	Measuring water stress in Eucalyptus grandis Hill ex Maiden seedlings planted into pots. South African Journal of Botany, 2008, 74, 133-138.	1.2	11
15	Using the age shift method to determine gains from weed management for <i>Pinus radiata</i> in New Zealand. Weed Research, 2015, 55, 461-469.	0.8	8
16	Can Copper Be Used to Treat Foliar Phytophthora Infections in Pinus radiata?. Plant Disease, 2019, 103, 1828-1834.	0.7	8
17	Hyperspectral VNIR-spectroscopy and imagery as a tool for monitoring herbicide damage in wilding conifers. Biological Invasions, 2019, 21, 3395-3413.	1.2	8
18	Quantifying Spray Deposition from a UAV Configured for Spot Spray Applications to Individual Plants. Transactions of the ASABE, 2020, 63, 1049-1058.	1.1	8

CAROL A ROLANDO

#	Article	IF	CITATIONS
19	Post-establishment vegetation control in aEucalyptus grandisxE. camaldulensisstand. Southern Forests, 2002, 193, 77-80.	0.1	7
20	Spray Application Efficiency from a Multi-Rotor Unmanned Aerial Vehicle Configured for Aerial Pesticide Application. Transactions of the ASABE, 2019, 62, 1447-1453.	1.1	7
21	Integrating across knowledge systems to drive action on chronic biological invasions. Biological Invasions, 2021, 23, 407-432.	1.2	7
22	Potential for Cleopus japonicus to control the weed Buddleja davidii in plantation forests in New Zealand. Forest Ecology and Management, 2011, 261, 78-83.	1.4	6
23	An aerial spot-spraying technique: a pilot study to test a method for pest eradication in urban environments. SpringerPlus, 2014, 3, 750.	1.2	6
24	Alternatives to hexazinone and terbuthylazine for chemical control ofCytisus scopariusinPinus radiataplantations in New Zealand. Weed Research, 2014, 54, 265-273.	0.8	6
25	Use of remotely sensed data to characterize weed competition in forest plantations. International Journal of Remote Sensing, 2017, 38, 2448-2463.	1.3	6
26	Efficacy of Fungicides Applied for Protectant and Curative Activity Against Myrtle Rust. Plant Disease, 2020, 104, 2123-2129.	0.7	5
27	Survival and growth ofPinus patulaat two years in response to harvest residue and pest management, in Mpumalanga, South Africa. Southern Forests, 2004, 200, 19-26.	0.1	4
28	An assessment of the impact of pesticides applied at planting on survival of pines during regeneration, in South Africa. South African Journal of Botany, 2006, 72, 649-655.	1.2	4
29	Herbicides for use in management of certified <i>Pinus radiata</i> plantations in New Zealand. Australian Forestry, 2014, 77, 123-132.	0.3	4
30	Site preparation and vegetation management impacts on <i>Pinus patula</i> growth and rotation end productivity in South Africa. Australian Forestry, 2019, 82, 107-115.	0.3	4
31	Refining tree size and dose–response functions for control of invasive <i>Pinus contorta</i> . Invasive Plant Science and Management, 2021, 14, 115-125.	O.5	4
32	Stem injection of a systemic insecticide to control Uraba lugens on urban Lophostemon confertus trees. Pest Management Science, 2011, 67, n/a-n/a.	1.7	3
33	An evaluation of the environmental behaviour, fate and risk of key pesticides used in South African forest plantations. Southern Forests, 2022, 84, 83-92.	0.2	3
34	Herbicide options for managing competitive vegetation during the establishment of Pinus radiata and Pseudotsuga menziesii var. menziesii in Southland, New Zealand. New Zealand Journal of Forestry Science, 2017, 47, .	0.8	2
35	Impacts of under-canopy vegetation on stand growth in two pine saw-timber stands, South Africa. New Zealand Journal of Forestry Science, 2018, 48, .	0.8	2
36	Optimising spot weed control regimes forPinus radiataplantations. Canadian Journal of Forest Research, 2019, 49, 759-766.	0.8	2

CAROL A ROLANDO

#	Article	IF	CITATIONS
37	The impact of slash management, fertilisation and vegetation management on <i>Pinus elliottii</i> pulpwood growth and rotation-end yield. South African Journal of Plant and Soil, 2019, 36, 249-259.	0.4	2
38	Effect of dose and adjuvant on uptake of triclopyr and dicamba into Pinus contorta needles. Plant-Environment Interactions, 2020, 1, 57-66.	0.7	2
39	Results from four Pinus patula water planting trials in the summer rainfall region of South Africa. Southern Forests, 2007, 69, 9-17.	0.2	1
40	The Effect of Formulation, Dose, and Adjuvants on Uptake of Phosphite Into Pine Foliage. Plant Disease, 2017, 101, 1652-1658.	0.7	1
41	Evaluating the efficacy of potential fungicide-adjuvant combinations for control of myrtle rust in New Zealand. Journal of Plant Diseases and Protection, 0, , 1.	1.6	1
42	Meeting droplet size specifications for aerial herbicide application to control wilding conifers. New Zealand Plant Protection, 0, 73, 13-23.	0.3	1
43	Efficacy and optimal timing of low-volume aerial applications of copper fungicides for the control of red needle cast of pine. New Zealand Journal of Forestry Science, 0, 52, .	0.8	1
44	Measuring water stress in <i>Pinus patula</i> Schiede ex Schlect. & Cham. seedlings. South African Journal of Plant and Soil, 2008, 25, 55-61.	0.4	0
45	Critical water stress levels inPinus patulaseedlings and their relation to measures of seedling morphology. Southern Forests, 2011, 73, 41-49.	0.2	0