Li Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/4864869/li-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 56 19 915 h-index g-index citations papers 61 8.7 1,319 5.01 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
56	Global Historical Stocks and Emissions of PBDEs. <i>Environmental Science & Environmental Science & Envi</i>	3 0:6 34	·0 98
55	Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012. <i>Chemosphere</i> , 2015 , 129, 100-9	8.4	95
54	Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	62
53	Global inventory, long-range transport and environmental distribution of dicofol. <i>Environmental Science & Environmental Scien</i>	10.3	37
52	Tracking chemicals in products around the world: introduction of a dynamic substance flow analysis model and application to PCBs. <i>Environment International</i> , 2016 , 94, 674-686	12.9	35
51	Global distribution potential and regional environmental risk of F-53B. <i>Science of the Total Environment</i> , 2018 , 640-641, 1365-1371	10.2	35
50	Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohol and Perfluoroalkyl Carboxylates: A Combined Dynamic Substance Flow and Environmental Fate Modeling Analysis. <i>Environmental Science & Description</i> (2017), 51, 4461-4470	10.3	33
49	A 17-fold increase of trifluoroacetic acid in landscape waters of Beijing, China during the last decade. <i>Chemosphere</i> , 2015 , 129, 110-7	8.4	32
48	HFC-134a emissions from mobile air conditioning in China from 1995 to 2030. <i>Atmospheric Environment</i> , 2015 , 102, 122-129	5.3	31
47	Airborne trifluoroacetic acid and its fraction from the degradation of HFC-134a in Beijing, China. <i>Environmental Science & Environmental Science & En</i>	10.3	31
46	Long-term emissions of hexabromocyclododecane as a chemical of concern in products in China. <i>Environment International</i> , 2016 , 91, 291-300	12.9	31
45	Stocks, flows and emissions of DBDPE in China and its international distribution through products and waste. <i>Environmental Pollution</i> , 2019 , 250, 79-86	9.3	27
44	Towards a systematic understanding of the dynamic fate of polychlorinated biphenyls in indoor, urban and rural environments. <i>Environment International</i> , 2018 , 117, 57-68	12.9	26
43	Polybrominated diphenyl ethers in farmland soils: source characterization, deposition contribution and apportionment. <i>Science of the Total Environment</i> , 2014 , 466-467, 524-32	10.2	26
42	Evaluating consumer exposure to disinfecting chemicals against coronavirus disease 2019 (COVID-19) and associated health risks. <i>Environment International</i> , 2020 , 145, 106108	12.9	26
41	How are Humans Exposed to Organic Chemicals Released to Indoor Air?. <i>Environmental Science & Environmental Science</i>	10.3	25
40	A Model for Risk-Based Screening and Prioritization of Human Exposure to Chemicals from Near-Field Sources. <i>Environmental Science & Environmental Sci</i>	10.3	22

(2020-2014)

39	Comparative study on PCDD/F pollution in soil from the Antarctic, Arctic and Tibetan Plateau. <i>Science of the Total Environment</i> , 2014 , 497-498, 353-359	10.2	21	
38	Revisiting the Contributions of Far- and Near-Field Routes to Aggregate Human Exposure to Polychlorinated Biphenyls (PCBs). <i>Environmental Science & Environmental Science & E</i>	10.3	21	
37	Global Performance and Trend of QSAR/QSPR Research: A Bibliometric Analysis. <i>Molecular Informatics</i> , 2014 , 33, 655-68	3.8	18	
36	Historical and projected emissions of HCFC-22 and HFC-410A from Chinaß room air conditioning sector. <i>Atmospheric Environment</i> , 2016 , 132, 30-35	5.3	17	
35	Non-polar organic compounds in autumn and winter aerosols in a typical city of eastern China: size distribution and impact of gasparticle partitioning on PM_{2.5} source apportionment. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 9375-9391	6.8	15	
34	Elucidating the Variability in the Hexabromocyclododecane Diastereomer Profile in the Global Environment. <i>Environmental Science & Environmental Scien</i>	10.3	13	
33	Atmospheric perfluoroalkyl acid occurrence and isomer profiles in Beijing, China. <i>Environmental Pollution</i> , 2019 , 255, 113129	9.3	11	
32	Risk-Based Chemical Ranking and Generating a Prioritized Human Exposome Database. <i>Environmental Health Perspectives</i> , 2021 , 129, 47014	8.4	11	
31	Mechanistic Pharmacokinetic Modeling of the Bioamplification of Persistent Lipophilic Organic Pollutants in Humans during Weight Loss. <i>Environmental Science & Environmental </i>	1 ^{10.3}	10	
30	Assessing the environmental occurrence and risk of nano-silver in Hunan, China using probabilistic material flow modeling. <i>Science of the Total Environment</i> , 2019 , 658, 1249-1255	10.2	10	
29	Occurrence of Single- and Double-Peaked Emission Profiles of Synthetic Chemicals. <i>Environmental Science & Environmental Scien</i>	10.3	10	
28	Clarifying Temporal Trend Variability in Human Biomonitoring of Polybrominated Diphenyl Ethers through Mechanistic Modeling. <i>Environmental Science & Environmental Science & </i>	10.3	10	
27	Uncovering global-scale risks from commercial chemicals in air <i>Nature</i> , 2021 , 600, 456-461	50.4	9	
26	Field determination and QSPR prediction of equilibrium-status soil/vegetation partition coefficient of PCDD/Fs. <i>Journal of Hazardous Materials</i> , 2014 , 276, 278-86	12.8	8	
25	Addressing uncertainty in mouthing-mediated ingestion of chemicals on indoor surfaces, objects, and dust. <i>Environment International</i> , 2021 , 146, 106266	12.9	8	
24	Estimated HCFC-142b emissions in China: 2000\(\mathbb{Q}\)050. Science Bulletin, 2014 , 59, 3046-3053		7	
23	Disease burden attributable to endocrine-disrupting chemicals exposure in China: A case study of phthalates. <i>Science of the Total Environment</i> , 2019 , 662, 615-621	10.2	5	
22	Comparison of fluorotelomer alcohol emissions from wastewater treatment plants into atmospheric and aquatic environments. <i>Environment International</i> , 2020 , 139, 105718	12.9	5	

21	Global environmental fate of short-chain chlorinated paraffins: Modeling with a single vs. multiple sets of physicochemical properties. <i>Science of the Total Environment</i> , 2019 , 666, 423-430	10.2	4
20	Thirdhand smoke from tobacco, e-cigarettes, cannabis, methamphetamine and cocaine: Partitioning, reactive fate, and human exposure in indoor environments <i>Environment International</i> , 2021 , 160, 107063	12.9	4
19	Distribution and Emission Estimation of Short- and Medium-Chain Chlorinated Paraffins in Chinese Products through Detection-Based Mass Balancing. <i>Environmental Science & Environmental Science & Env</i>	10.3	4
18	Distribution mode and environmental risk of POP pesticides such as endosulfan under the agricultural practice of straw incorporating. <i>Environmental Pollution</i> , 2017 , 220, 1394-1399	9.3	2
17	Development and Evaluation of a Holistic and Mechanistic Modeling Framework for Chemical Emissions, Fate, Exposure, and Risk. <i>Environmental Health Perspectives</i> , 2021 , 129, 127006	8.4	2
16	Formation of non-extractable residues as a potentially dominant process in the fate of PAHs in soil: Insights from a combined field and modeling study on the eastern Tibetan Plateau. <i>Environmental Pollution</i> , 2020 , 267, 115383	9.3	2
15	Inter-Individual Variability and Non-linear Dose-Response Relationship in Assessing Human Health Impact From Chemicals in LCA: Addressing Uncertainties in Exposure and Toxicological Susceptibility. <i>Frontiers in Sustainability</i> , 2021 , 2,	2.1	2
14	Dielectric Properties of HFC-227ea (Heptafluor-Opropane) and its Mixtures With HFC-125 (Pen-Tafluoroethane) as a Substitute for SF6. <i>IEEE Access</i> , 2019 , 7, 158016-158024	3.5	2
13	Emerging investigator series: the role of chemical properties in human exposure to environmental chemicals. <i>Environmental Sciences: Processes and Impacts</i> , 2021 ,	4.3	2
12	Response to Comment on "Airborne trifluoroacetic acid and its fraction from the degradation of HFC-134a in Beijing, China?. <i>Environmental Science & Environmental Science & E</i>	10.3	1
11	Introduction: Modeling the Fate of Chemicals in Products in the Total Environment. <i>Springer Theses</i> , 2020 , 3-25	0.1	1
10	Developing Models for Tracking the Fate of Chemicals in Products in the Total Environment. <i>Springer Theses</i> , 2020 , 27-43	0.1	1
9	Approach to Predicting the Size-Dependent Inhalation Intake of Particulate Novel Brominated Flame Retardants. <i>Environmental Science & Environmental S</i>	10.3	1
8	Do dissipation and transformation of FHCH and p,pRDDT in soil respond to a proxy for climate change? Insights from a field study on the eastern Tibetan Plateau. <i>Environmental Pollution</i> , 2021 , 278, 116824	9.3	1
7	Ecological unequal exchange: quantifying emissions of toxic chemicals embodied in the global trade of chemicals, products, and waste. <i>Environmental Research Letters</i> , 2022 , 17, 044054	6.2	1
6	Low-Level Environmental Per- and Polyfluoroalkyl Substances and Preterm Birth: A Nested Case (Iontrol Study Among a Uyghur Population in Northwestern China. <i>Exposure and Health</i> ,1	8.8	
5	Mechanistically Modeling Human Exposure to Persistent Organic Pollutants 2020 , 115-128		
4	Effective Management of Demolition Waste Containing Hexabromocyclododecane in China. <i>Springer Theses</i> , 2020 , 99-111	0.1	

LIST OF PUBLICATIONS

3	Global Long-Term Fate and Dispersal of Polychlorinated Biphenyls. <i>Springer Theses</i> , 2020 , 47-61	0.1
2	Elucidating the Variability in the Hexabromocyclododecane Diastereomer Profile in the Global Environment. <i>Springer Theses</i> , 2020 , 79-97	0.1
1	The Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohols and Perfluoroalkyl Carboxylates. <i>Springer Theses</i> , 2020 , 63-77	0.1