Elmar Jaenicke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864857/publications.pdf

Version: 2024-02-01

331670 361022 1,451 35 21 35 h-index citations g-index papers 35 35 35 1276 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SDS-induced Phenoloxidase Activity of Hemocyanins fromLimulus polyphemus, Eurypelma californicum, andCancer magister. Journal of Biological Chemistry, 2001, 276, 17796-17799.	3.4	166
2	Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Developmental and Comparative Immunology, 2004, 28, 673-687.	2.3	163
3	Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Gene, 2007, 398, 183-191.	2.2	142
4	Minireview: Recent progress in hemocyanin research. Integrative and Comparative Biology, 2007, 47, 631-644.	2.0	141
5	Tyrosinases from crustaceans form hexamers. Biochemical Journal, 2003, 371, 515-523.	3.7	86
6	Spider Hemocyanin Binds Ecdysone and 20-OH-Ecdysone. Journal of Biological Chemistry, 1999, 274, 34267-34271.	3.4	75
7	Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1380-1394.	2.3	66
8	Functional Changes in the Family of Type 3 Copper Proteins During Evolution. ChemBioChem, 2004, 5, 163-169.	2.6	60
9	Conversion of crustacean hemocyanin to catecholoxidase. Micron, 2004, 35, 89-90.	2.2	46
10	A threeâ€dimensional model of mammalian tyrosinase active site accounting for loss of function mutations. Pigment Cell & Melanoma Research, 2007, 20, 394-401.	3.6	44
11	Identification, Structure, and Properties of Hemocyanins from Diplopod Myriapoda. Journal of Biological Chemistry, 1999, 274, 29071-29074.	3.4	41
12	Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice?. Developmental and Comparative Immunology, 2009, 33, 1055-1063.	2.3	39
13	Chlorophyll a/b binding-specificity in water-soluble chlorophyll protein. Nature Plants, 2018, 4, 920-929.	9.3	39
14	Polyphenoloxidase from Riesling and Dornfelder wine grapes (Vitis vinifera) is a tyrosinase. Food Chemistry, 2015, 183, 49-57.	8.2	36
15	Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors. FEBS Letters, 2008, 582, 749-754.	2.8	35
16	Kinetic properties of catecholoxidase activity of tarantula hemocyanin. FEBS Journal, 2008, 275, 1518-1528.	4.7	32
17	Quaternary structure and functional properties of Penaeus monodon hemocyanin. FEBS Journal, 2005, 272, 2060-2075.	4.7	27
18	Cupredoxin-like domains in haemocyanins. Biochemical Journal, 2010, 426, 373-378.	3.7	27

#	Article	IF	Citations
19	Cockroach allergens Per a 3 are oligomers. Developmental and Comparative Immunology, 2010, 34, 722-733.	2.3	27
20	Stability of Water-Soluble Chlorophyll Protein (WSCP) Depends on Phytyl Conformation. ACS Omega, 2019, 4, 7971-7979.	3.5	27
21	The refined structure of functional unit h of keyhole limpet hemocyanin (KLH1â€h) reveals disulfide bridges. IUBMB Life, 2011, 63, 183-187.	3.4	23
22	How water-mediated hydrogen bonds affect chlorophyll a/b selectivity in Water-Soluble Chlorophyll Protein. Scientific Reports, 2019, 9, 18255.	3.3	23
23	Native and subunit molecular mass and quarternary structure of the hemoglobin from the primitive branchiopod crustacean Triops cancriformis. FEBS Journal, 2006, 273, 4055-4071.	4.7	15
24	Molecular mass of macromolecules and subunits and the quaternary structure of hemoglobin from the microcrustacean Daphnia magna. FEBS Journal, 2006, 273, 3393-3410.	4.7	14
25	Structure of the Altitude Adapted Hemoglobin of Guinea Pig in the R2-State. PLoS ONE, 2010, 5, e12389.	2.5	12
26	Crystallization and Preliminary Analysis of Crystals of the 24-Meric Hemocyanin of the Emperor Scorpion (Pandinus imperator). PLoS ONE, 2012, 7, e32548.	2.5	11
27	How To Design Selective Ligands for Highly Conserved Binding Sites: A Case Study Using <i>N</i> -Myristoyltransferases as a Model System. Journal of Medicinal Chemistry, 2020, 63, 2095-2113.	6.4	10
28	Mechanism of Oligomerisation of Cyclase-associated Protein from Dictyostelium discoideum in Solution. Journal of Molecular Biology, 2006, 362, 1072-1081.	4.2	8
29	Urate as effector for crustacean hemocyanins. Micron, 2004, 35, 109-110.	2.2	5
30	Isolation and characterization of haemoporin, an abundant haemolymph protein from Aplysia californica. Biochemical Journal, 2003, 375, 681-688.	3.7	3
31	Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1887-1899.	2.6	3
32	Monte Carlo-based rigid body modelling of large protein complexes against small angle scattering data. Computational Biology and Chemistry, 2010, 34, 158-164.	2.3	2
33	Homology modelling of hemocyanins and tyrosinases: pitfalls in automated approaches. Micron, 2004, 35, 97-98.	2.2	1
34	Functional Changes in the Family of Type 3 Copper Proteins During Evolution. ChemInform, 2004, 35, no.	0.0	1
35	Crystallization of the Altitude Adapted Hemoglobin of Guinea Pig. Protein and Peptide Letters, 2009, 16, 444-446.	0.9	1