Jon R Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864769/publications.pdf

Version: 2024-02-01

331538 395590 3,388 34 21 33 h-index citations g-index papers 35 35 35 4903 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Determination of Histone Methyltransferase Structure by Crystallography. Methods in Molecular Biology, 2022, , 137-147.	0.4	1
2	A key to unlocking chromatin revealed by complex structures. Nature, 2019, 573, 355-356.	13.7	3
3	G-tract RNA removes Polycomb repressive complex 2 from genes. Nature Structural and Molecular Biology, 2019, 26, 899-909.	3.6	86
4	Production and Crystallization of Full-Length Human AMP-Activated Protein Kinase ($\hat{l}\pm 1\hat{l}^21\hat{l}^31$). Methods in Molecular Biology, 2018, 1732, 1-14.	0.4	1
5	The structure of the RbBP5 \hat{l}^2 -propeller domain reveals a surface with potential nucleic acid binding sites. Nucleic Acids Research, 2018, 46, 3802-3812.	6.5	11
6	Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Biochemical Journal, 2017, 474, 3059-3073.	1.7	117
7	Comment on "Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2â€. Science, 2016, 354, 1543-1543.	6.0	5
8	Identification of (<i>R</i>)- <i>N</i> -(i-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroe (CPI-1205), a Potent and Selective Inhibitor of Histone Methyltransferase EZH2, Suitable for Phase I Clinical Trials for B-Cell Lymphomas. Journal of Medicinal Chemistry, 2016, 59, 9928-9941.	:thyl)piperi	ídin-4-yl)ethyl)
9	Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nature Communications, 2016, 7, 11316.	5.8	326
10	Evolving Catalytic Properties of the MLL Family SET Domain. Structure, 2015, 23, 1921-1933.	1.6	67
11	Histone Recognition by WD40 Proteins. , 2015, , 83-100.		2
12	Microbial Mercury Reduction. , 2014, , 175-197.		23
13	A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Nucleic Acids Research, 2014, 42, 661-671.	6.5	35
14	The Role of Lysyl Oxidase in SRC-Dependent Proliferation and Metastasis of Colorectal Cancer. Journal of the National Cancer Institute, 2011, 103, 407-424.	3.0	169
15	Foot-and-Mouth Disease Virus 2C Is a Hexameric AAA+ Protein with a Coordinated ATP Hydrolysis Mechanism. Journal of Biological Chemistry, 2010, 285, 24347-24359.	1.6	57
16	Characterization of a Novel WDR5-binding Site That Recruits RbBP5 through a Conserved Motif to Enhance Methylation of Histone H3 Lysine 4 by Mixed Lineage Leukemia Protein-1*. Journal of Biological Chemistry, 2010, 285, 32967-32976.	1.6	92
17	Methylation and demethylation activities of a C. elegans MLL-like complex attenuate RAS signalling. Developmental Biology, 2010, 341, 142-153.	0.9	50
18	Engineering heme binding sites in monomeric rop. Journal of Biological Inorganic Chemistry, 2009, 14, 497-505.	1.1	4

#	Article	IF	CITATIONS
19	Structural Basis for the Requirement of Additional Factors for MLL1 SET Domain Activity and Recognition of Epigenetic Marks. Molecular Cell, 2009, 33, 181-191.	4.5	201
20	Targeting the JMJD2A histone lysine demethylase. Nature Structural and Molecular Biology, 2007, 14, 682-684.	3.6	14
21	6 Structure of SET domain protein lysine methyltransferases. The Enzymes, 2006, 24, 155-178.	0.7	5
22	Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes and Development, 2005, 19, 1444-1454.	2.7	159
23	E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains. Oncogene, 2004, 23, 5138-5150.	2.6	93
24	Regulation of p53 activity through lysine methylation. Nature, 2004, 432, 353-360.	13.7	706
25	SET domains and histone methylation. Current Opinion in Structural Biology, 2003, 13, 699-705.	2.6	144
26	Mechanism and Control in Biological Amine Methylation. Helvetica Chimica Acta, 2003, 86, 4000-4006.	1.0	11
27	Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature, 2003, 421, 652-656.	13.7	346
28	Engineering redox functions in a nucleic acid binding protein. Chemical Communications, 2003, , 356-357.	2.2	12
29	Mercury transport and resistance. Biochemical Society Transactions, 2002, 30, 715-718.	1.6	45
30	Crystal Structure and Functional Analysis of the Histone Methyltransferase SET7/9. Cell, 2002, 111, 105-115.	13.5	198
31	Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. Journal of Inorganic Biochemistry, 2000, 79, 225-229.	1.5	76
32	MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters?. FEBS Letters, 2000, 472, 78-82.	1.3	82
33	Accumulation of metallothionein transcripts in response to iron, copper and zinc: Metallothionein and metal-chelate reductase. Acta Physiologiae Plantarum, 1997, 19, 451-457.	1.0	7
34	Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein-deficient Synechococcus PCC 7942: putative role for MT2 in Zn2+ metabolism. Plant Molecular Biology, 1996, 30, 1169-1179.	2.0	60