
Jenifer GÃ³mez-Pastora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal, 2014, 256, 187-204.	6.6	325
2	Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical Engineering Journal, 2017, 310, 407-427.	6.6	247
3	Hyperferritinemia in critically ill COVID-19 patients – Is ferritin the product of inflammation or a pathogenic mediator?. Clinica Chimica Acta, 2020, 509, 249-251.	0.5	161
4	Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Separation and Purification Technology, 2017, 172, 16-31.	3.9	61
5	On-chip polyelectrolyte coating onto magnetic droplets – towards continuous flow assembly of drug delivery capsules. Lab on A Chip, 2017, 17, 3785-3795.	3.1	38
6	Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chemical Engineering Journal, 2018, 344, 487-497.	6.6	31
7	Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions. Scientific Reports, 2019, 9, 7265.	1.6	23
8	Magnetic Bead Separation from Flowing Blood in a Two-Phase Continuous-Flow Magnetophoretic Microdevice: Theoretical Analysis through Computational Fluid Dynamics Simulation. Journal of Physical Chemistry C, 2017, 121, 7466-7477.	1.5	21
9	Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab on A Chip, 2018, 18, 1593-1606.	3.1	21
10	Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric study. Soft Matter, 2020, 16, 9506-9518.	1.2	17
11	Quantification of the Mean and Distribution of Hemoglobin Content in Normal Human Blood Using Cell Tracking Velocimetry. Analytical Chemistry, 2020, 92, 1956-1962.	3.2	16
12	A Subpopulation of Monocytes in Normal Human Blood Has Significant Magnetic Susceptibility: Quantification and Potential Implications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 478-487.	1.1	13
13	Two-Step Numerical Approach To Predict Ferrofluid Droplet Generation and Manipulation inside Multilaminar Flow Chambers. Journal of Physical Chemistry C, 2019, 123, 10065-10080.	1.5	12
14	Self-assembly and sedimentation of 5Ânm SPIONs using horizontal, high magnetic fields and gradients. Separation and Purification Technology, 2020, 248, 117012.	3.9	12
15	Novel Approaches Concerning the Numerical Modeling of Particle and Cell Separation in Microchannels: A Review. Processes, 2022, 10, 1226.	1.3	10
16	The Reverse of Controlled Release: Controlled Sequestration of Species and Biotoxins into Nanoparticles (NPs). From Biomaterials Towards Medical Devices, 2018, , 207-243.	0.0	9
17	Recovery of Magnetic Catalysts: Advanced Design for Process Intensification. Industrial & Engineering Chemistry Research, 2021, 60, 16780-16790.	1.8	9
18	SPIONs self-assembly and magnetic sedimentation in quadrupole magnets: Gaining insight into the separation mechanisms. Separation and Purification Technology, 2022, 280, 119786.	3.9	9

#	Article	IF	CITATIONS
19	Intrinsically magnetic susceptibility in human blood and its potential impact on cell separation: Non-classical and intermediate monocytes have the strongest magnetic behavior in fresh human blood. Experimental Hematology, 2021, 99, 21-31.e5.	0.2	7
20	Potential of cell tracking velocimetry as an economical and portable hematology analyzer. Scientific Reports, 2022, 12, 1692.	1.6	6
21	Magnetophoretic and spectral characterization of oxyhemoglobin and deoxyhemoglobin: Chemical versus enzymatic processes. PLoS ONE, 2021, 16, e0257061.	1.1	5
22	Continuous-Flow Magnetic Fractionation of Red Blood Cells Based on Hemoglobin Content and Oxygen Saturation—Clinical Blood Supply Implications and Sickle Cell Anemia Treatment. Processes, 2022, 10, 927.	1.3	3
23	Computational Analysis of a Two-Phase Continuous-Flow Magnetophoretic Microsystem for Particle Separation from Biological Fluids. Computer Aided Chemical Engineering, 2017, 40, 1183-1188.	0.3	1
24	Computational analysis of facilitated transport in a microfluidic device. Computer Aided Chemical Engineering, 2017, 40, 1189-1194.	0.3	0
25	Computational Analysis of Magnetic Droplet Generation and Manipulation in Microfluidic Devices. , 0,		Ο