Chun-Hong Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864665/publications.pdf

Version: 2024-02-01

49 papers

1,166 citations

³⁹⁴⁴²¹ 19 h-index 395702 33 g-index

49 all docs 49 docs citations

49 times ranked

1730 citing authors

#	Article	IF	CITATIONS
1	Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615-622.	16.0	103
2	Highly Efficient Perovskite Light-Emitting Diodes Incorporating Full Film Coverage and Bipolar Charge Injection. Journal of Physical Chemistry Letters, 2017, 8, 1810-1818.	4.6	97
3	Holeâ€Transporting Materials Incorporating Carbazole into Spiroâ€Core for Highly Efficient Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807094.	14.9	93
4	Transfer-Free Synthesis of Doped and Patterned Graphene Films. ACS Nano, 2015, 9, 594-601.	14.6	82
5	Nearly 100% Efficiency Enhancement of CH ₃ NH ₃ PbBr ₃ Perovskite Light-Emitting Diodes by Utilizing Plasmonic Au Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 3961-3969.	4.6	75
6	Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells. Organic Electronics, 2013, 14, 657-664.	2.6	67
7	Comparative studies on the inorganic and organic p-type dopants in organic light-emitting diodes with enhanced hole injection. Applied Physics Letters, 2013, 102, .	3.3	52
8	Control of Conjugation Degree via Position Engineering to Highly Efficient Phosphorescent Host Materials. Organic Letters, 2014, 16, 3748-3751.	4.6	49
9	New dibenzofuran/spirobifluorene hybrids as thermally stable host materials for efficient phosphorescent organic light-emitting diodes with low efficiency roll-off. Physical Chemistry Chemical Physics, 2012, 14, 14224.	2.8	37
10	Enhanced Hole Injection in Phosphorescent Organic Light-Emitting Diodes by Thermally Evaporating a Thin Indium Trichloride Layer. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5211-5216.	8.0	37
11	Novel dibenzothiophene based host materials incorporating spirobifluorene for high-efficiency white phosphorescent organic light-emitting diodes. Organic Electronics, 2013, 14, 902-908.	2.6	37
12	Full coverage all-inorganic cesium lead halide perovskite film for high-efficiency light-emitting diodes assisted by 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene. Organic Electronics, 2017, 50, 480-484.	2.6	36
13	Enhancement of electroluminescence efficiency and stability in phosphorescent organic light-emitting diodes with double exciton-blocking layers. Organic Electronics, 2013, 14, 1177-1182.	2.6	35
14	Planar starburst hole-transporting materials for highly efficient perovskite solar cells. Nano Energy, 2019, 63, 103865.	16.0	34
15	Siliconâ€Based Material with Spiroâ€Annulated Fluorene/Triphenylamine as Host and Excitonâ€Blocking Layer for Blue Electrophosphorescent Devices. Chemistry - A European Journal, 2013, 19, 11791-11797.	3.3	31
16	Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture. Applied Surface Science, 2014, 314, 858-863.	6.1	26
17	Spiro-annulated hole-transport material outperforms NPB with higher mobility and stability in organic light-emitting diodes. Dyes and Pigments, 2014, 107, 15-20.	3.7	23
18	Surface Plasmon Polariton Enhancement in Blue Organic Light-Emitting Diode: Role of Metallic Cathode. Applied Physics Express, 2012, 5, 102102.	2.4	19

#	Article	IF	CITATIONS
19	Role of hole injection layer in intermediate connector of tandem organic light-emitting devices. Organic Electronics, 2014, 15, 3694-3701.	2.6	19
20	Origin of improved stability in green phosphorescent organic light-emitting diodes based on a dibenzofuran/spirobifluorene hybrid host. Applied Physics A: Materials Science and Processing, 2015, 118, 381-387.	2.3	19
21	Nâ€type Doping of Organicâ€Inorganic Hybrid Perovskites Toward Highâ€Performance Photovoltaic Devices. Solar Rrl, 2019, 3, 1800269.	5. 8	16
22	An efficient CsPbBr3 perovskite light-emitting diode by employing 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene as a hole and exciton blocking layer. Journal of Luminescence, 2020, 219, 116915.	3.1	15
23	Efficient quasi-two dimensional perovskite light-emitting diodes using a cage-type additive. Journal of Materials Chemistry C, 2020, 8, 9845-9853.	5.5	14
24	Highly efficient quasi-two dimensional perovskite light-emitting diodes by phase tuning. Organic Electronics, 2021, 98, 106295.	2.6	12
25	A method towards 100% internal quantum efficiency for all-inorganic cesium halide perovskite light-emitting diodes. Organic Electronics, 2018, 58, 88-93.	2.6	11
26	47-Fold EQE improvement in CsPbBr3 perovskite light-emitting diodes via double-additives assistance. Organic Electronics, 2019, 70, 264-271.	2.6	10
27	New optical method for the determination of \hat{l}^2 -galactosidase and \hat{l} ±-fetoprotein based on oxidase-like activity of fluorescein. Talanta, 2019, 194, 164-170.	5.5	10
28	Efficient red phosphorescent organic light emitting diodes based on solution processed all-inorganic cesium lead halide perovskite as hole transporting layer. Organic Electronics, 2017, 50, 411-417.	2.6	9
29	84% efficiency improvement in all-inorganic perovskite light-emitting diodes assisted by a phosphorescent material. RSC Advances, 2018, 8, 15698-15702.	3.6	9
30	Large current efficiency enhancement in the CsPbBr3 perovskite light-emitting diodes assisted by an ultrathin buffer layer. Journal of Luminescence, 2019, 209, 251-257.	3.1	9
31	Temperature dependence of magnetoresistance in Co/ITO multilayers. Journal of Alloys and Compounds, 2010, 492, 61-64.	5 . 5	8
32	Triplet harvesting in polyfluorene copolymer-based organic light emitting diodes through thermally activated reverse intersystem crossing. Organic Electronics, 2017, 41, 100-106.	2.6	8
33	A Hybrid Functional Study on Perovskite-Based Compounds CsPb _{1â^'α} Zn _α I _{3â^'β} X _β (X = Cl or Br). Journal of Physical Chemistry Letters, 2022, 13, 5900-5909.	4.6	8
34	Highly Efficient White Organic Light-Emitting Diodes with Controllable Excitons Behavior by a Mixed Interlayer between Fluorescence Blue and Phosphorescence Yellow-Emitting Layers. International Journal of Photoenergy, 2013, 2013, 1-7.	2.5	7
35	30-Fold efficiency enhancement achieved in the perovskite light-emitting diodes. RSC Advances, 2017, 7, 50571-50577.	3.6	7
36	Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving layer. Journal of Materials Chemistry C, 2019, 7, 8705-8711.	5 . 5	6

#	Article	IF	CITATIONS
37	Highly Efficient Quasi-2D Perovskite Light-Emitting Diodes Incorporating a TADF Dendrimer as an Exciton-Retrieving Additive. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44585-44595.	8.0	6
38	Giant magnetoresistance of Co/ITO multilayers. Solid State Communications, 2009, 149, 2254-2256.	1.9	5
39	Out-of-plane coercive field of Ni80Fe20 antidot arrays. Journal of Magnetism and Magnetic Materials, 2010, 322, 3278-3280.	2.3	4
40	Efficient halide perovskite light-emitting diodes with emissive layer consisted of multilayer coatings. Journal of Applied Physics, 2019, 126, 165502.	2.5	4
41	86â€3: Ultraâ€Stable Deepâ€Dyed Perovskiteâ€Polymer Composites as Tunable Downconverters. Digest of Technical Papers SID International Symposium, 2020, 51, 1303-1306.	0.3	3
42	White PeLED employing a mixed emission layer composed of a small organic molecule and an organic-inorganic hybrid perovskite. Chinese Science Bulletin, 2017, 62, 2780-2787.	0.7	3
43	Exciton harvesting in quasi-2D perovskite light-emitting diodes with an encapsulated thermally activated delayed fluorescence. Applied Physics Letters, 2021, 119, .	3.3	3
44	Aqueous solution-processed InCl 3 as an effective buffer layer to improve hole injection in simplified phosphorescent organic light emitting diodes. Organic Electronics, 2017, 44, 110-114.	2.6	2
45	High efficiency green perovskite light-emitting diodes based on exciton blocking layer. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 038501.	0.5	2
46	Magnetic Properties and Magnetoresistance in Fe-ITO Granular Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1523-1527.	2.2	1
47	Magnetoresistances in Ni80Fe20-ITO granular film. Journal of Alloys and Compounds, 2012, 523, 72-74.	5. 5	1
48	Til4-doping induced bulk defects passivation in halide perovskites for high efficient photovoltaic devices. Organic Electronics, 2021, 88, 105973.	2.6	1
49	Significant electroluminescence efficiency and stability enhancements in perovskite light-emitting diodes with double additives. Journal of Luminescence, 2022, , 119010.	3.1	1