Carla Rizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864600/publications.pdf

Version: 2024-02-01

361296 454834 33 943 20 30 citations h-index g-index papers 34 34 34 1091 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity. ACS Nano, 2018, 12, 1296-1305.	7.3	77
2	lonic liquids gels: Soft materials for environmental remediation. Journal of Colloid and Interface Science, 2018, 517, 182-193.	5.0	68
3	Self-Sustaining Supramolecular Ionic Liquid Gels for Dye Adsorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 12453-12462.	3.2	58
4	lonic liquid binary mixtures: Promising reaction media for carbohydrate conversion into 5-hydroxymethylfurfural. Applied Catalysis A: General, 2014, 482, 287-293.	2.2	48
5	Carbohydrate-supramolecular gels: Adsorbents for chromium(VI) removal from wastewater. Journal of Colloid and Interface Science, 2019, 548, 184-196.	5.0	45
6	lonic Liquid Binary Mixtures, Zeolites, and Ultrasound Irradiation: A Combination to Promote Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 5818-5826.	3.2	45
7	Activity of a Heterogeneous Catalyst in Deep Eutectic Solvents: The Case of Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 13359-13368.	3.2	42
8	Solution and thermal behaviour of novel dicationic imidazolium ionic liquids. Organic and Biomolecular Chemistry, 2013, 11, 5836.	1.5	41
9	Multifunctional Carrier Based on Halloysite/Laponite Hybrid Hydrogel for Kartogenin Delivery. ACS Medicinal Chemistry Letters, 2019, 10, 419-424.	1.3	39
10	Environmentally Friendly Eutectogels Comprising <scp>lâ€e</scp> mino Acids and Deep Eutectic Solvents: Efficient Materials for Wastewater Treatment. ChemPlusChem, 2020, 85, 301-311.	1.3	38
11	Dicationic organic salts: gelators for ionic liquids. Soft Matter, 2014, 10, 9281-9292.	1.2	37
12	Supramolecular Hydro―and Ionogels: A Study of Their Properties and Antibacterial Activity. Chemistry - A European Journal, 2017, 23, 16297-16311.	1.7	37
13	Insights into the Formation and Structures of Molecular Gels by Diimidazolium Salt Gelators in Ionic Liquids or "Normal―Solvents. Chemistry - A European Journal, 2016, 22, 11269-11282.	1.7	36
14	Amino Acid-Based Cholinium Ionic Liquids as Sustainable Catalysts for PET Depolymerization. ACS Sustainable Chemistry and Engineering, 2021, 9, 15157-15165.	3.2	32
15	Task Specific Dicationic Ionic Liquids: Recyclable Reaction Media for the Mononuclear Rearrangement of Heterocycles. Journal of Organic Chemistry, 2014, 79, 8678-8683.	1.7	27
16	Catalysis in Supramolecular Systems: the Case of Gel Phases. European Journal of Organic Chemistry, 2021, 3148-3169.	1.2	26
17	lonic liquids: "normal―solvents or nanostructured fluids?. Organic and Biomolecular Chemistry, 2021, 19, 2076-2095.	1.5	26
18	Task-Specific Organic Salts and Ionic Liquids Binary Mixtures: A Combination to Obtain 5-Hydroxymethylfurfural From Carbohydrates. Frontiers in Chemistry, 2019, 7, 134.	1.8	25

#	Article	IF	CITATIONS
19	Twoâ€Component Hydrogels Formed by Cyclodextrins and Dicationic Imidazolium Salts. European Journal of Organic Chemistry, 2014, 2014, 1013-1024.	1.2	24
20	Naphthalimide Imidazolium-Based Supramolecular Hydrogels as Bioimaging and Theranostic Soft Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48442-48457.	4.0	24
21	Functionalised diimidazolium salts: the anion effect on the catalytic ability. RSC Advances, 2016, 6, 58477-58484.	1.7	20
22	The ultrasounds–ionic liquids synergy on the copper catalyzed azide–alkyne cycloaddition between phenylacetylene and 4-azidoquinoline. Ultrasonics Sonochemistry, 2015, 23, 317-323.	3.8	19
23	Ionic Liquid Gels: Supramolecular Reaction Media for the Alcoholysis of Anhydrides. Journal of Organic Chemistry, 2019, 84, 6356-6365.	1.7	18
24	Bio-based chitosan and cellulose ionic liquid gels: polymeric soft materials for the desulfurization of fuel. Green Chemistry, 2022, 24, 1318-1334.	4.6	17
25	Chemo-enzymatic Conversion of Glucose in 5-Hydroxymethylfurfural: The Joint Effect of Ionic Liquids and Ultrasound. ACS Sustainable Chemistry and Engineering, 2020, 8, 11204-11214.	3.2	16
26	Natural eutectogels: sustainable catalytic systems for Câ \in C bond formation reactions. Green Chemistry, 2021, 23, 6555-6565.	4.6	16
27	Carbon Nanomaterial Doped Ionic Liquid Gels for the Removal of Pharmaceutically Active Compounds from Water. Molecules, 2019, 24, 2788.	1.7	10
28	Ionic liquid gels and antioxidant carbon nanotubes: Hybrid soft materials with improved radical scavenging activity. Journal of Colloid and Interface Science, 2019, 556, 628-639.	5.0	10
29	Ï€-Conjugated diimidazolium salts: rigid structure to obtain organized materials. Physical Chemistry Chemical Physics, 2015, 17, 26903-26917.	1.3	6
30	Insights into the effect of the spacer on the properties of imidazolium based AIE luminogens. Dyes and Pigments, 2021, 186, 109035.	2.0	6
31	Carbon-based ionic liquid gels: alternative adsorbents for pharmaceutically active compounds in wastewater. Environmental Science: Nano, 2021, 8, 131-145.	2.2	6
32	Supramolecular complexes formed by dimethoxypillar[5]arenes and imidazolium salts: a joint experimental and computational investigation. New Journal of Chemistry, 2017, 41, 12490-12505.	1.4	4
33	lonic liquids as extraction solvents for removal of dyes. , 2022, , 123-140.		O