
Vassilis Kontogiorgos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pectin-based films and coatings with plant extracts as natural preservatives: A systematic review. Trends in Food Science and Technology, 2022, 120, 193-211.	7.8	48
2	Techniques for the chemical and physicochemical characterization of polysaccharides. , 2021, , 27-74.		4
3	Influence of cations, pH and dispersed phases on pectin emulsification properties. Current Research in Food Science, 2021, 4, 398-404.	2.7	8
4	Baobab polysaccharides as emulsifiers. LWT - Food Science and Technology, 2021, 144, 111235.	2.5	10
5	Techno-Economic Assessment of Polysaccharide Extraction from Baobab: A Scale Up Analysis. Sustainability, 2021, 13, 9915.	1.6	5
6	Sustainable polysaccharides from Malvaceae family: Structure and functionality. Food Hydrocolloids, 2021, 118, 106749.	5.6	5
7	Structure and rheology of pectic polysaccharides from baobab fruit and leaves. Carbohydrate Polymers, 2021, 273, 118540.	5.1	5
8	Emulsifying properties of Ghanaian grewia gum. International Journal of Food Science and Technology, 2020, 55, 1909-1915.	1.3	4
9	Rheological, tribological and sensory attributes of textureâ€modified foods for dysphagia patients and the elderly: A review. International Journal of Food Science and Technology, 2020, 55, 1862-1871.	1.3	34
10	Soluble dietary fibres from sugarcane bagasse. International Journal of Food Science and Technology, 2020, 55, 1943-1949.	1.3	6
11	Emulsification Properties of Pectin. , 2020, , 83-97.		4
12	Baobab polysaccharides from fruits and leaves. Food Hydrocolloids, 2020, 106, 105874.	5.6	24
13	Effects of Blackcurrant Fibre on Dough Physical Properties and Bread Quality Characteristics. Food Biophysics, 2020, 15, 313-322.	1.4	14
14	Seaweed Polysaccharides (Agar, Alginate Carrageenan). , 2019, , 240-250.		30
15	Extrusion processing of raw food materials and by-products: A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 2979-2998.	5.4	81
16	Galactomannans (Guar, Locust Bean, Fenugreek, Tara). , 2019, , 109-113.		9
17	Pectin recovery and characterization from lemon juice waste streams. Journal of the Science of Food and Agriculture, 2019, 99, 6191-6198.	1.7	25
18	Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science, 2019, 270, 28-37.	7.0	61

VASSILIS KONTOGIORGOS

#	Article	IF	CITATIONS
19	Fabrication and characterisation of metal-doped pectin films. Food Hydrocolloids, 2019, 92, 259-266.	5.6	16
20	Dietary fibre from berryâ€processing waste and its impact on bread structure: a review. Journal of the Science of Food and Agriculture, 2019, 99, 4189-4199.	1.7	33
21	Structure and physicochemical properties of Ghanaian grewia gum. International Journal of Biological Macromolecules, 2019, 122, 866-872.	3.6	11
22	Behavior of In Situ Crossâ€Linked Hydrogels with Rapid Gelation Kinetics on Contact with Physiological Fluids. Macromolecular Chemistry and Physics, 2018, 219, 1700584.	1.1	11
23	Structure-Function Relationships in Pectin Emulsification. Food Biophysics, 2018, 13, 71-79.	1.4	67
24	Fractionation and characterisation of dietary fibre from blackcurrant pomace. Food Hydrocolloids, 2018, 81, 398-408.	5.6	108
25	Pectin Conformation in Solution. Journal of Physical Chemistry B, 2018, 122, 7286-7294.	1.2	46
26	<scp>M</scp> esoscopic structure of pectin in solution. Biopolymers, 2017, 107, e23016.	1.2	26
27	Linear viscoelasticity of gluten: Decoupling of relaxation mechanisms. Journal of Cereal Science, 2017, 75, 286-295.	1.8	8
28	Pectin isolation and characterization from six okra genotypes. Food Hydrocolloids, 2017, 72, 323-330.	5.6	146
29	Modeling and fundamental aspects of structural relaxation in high-solid hydrocolloid systems. Food Hydrocolloids, 2017, 68, 232-237.	5.6	7
30	Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality. Food Hydrocolloids, 2017, 68, 211-218.	5.6	147
31	Structural characterisation and rheological properties of a polysaccharide from sesame leaves () Tj ETQq1 1 0.78	4314 rgBT	/Qyerlock 10
32	Influence of supramolecular forces on the linear viscoelasticity of gluten. Rheologica Acta, 2016, 55, 187-195.	1.1	11
33	Engineering of acidic O/W emulsions with pectin. Colloids and Surfaces B: Biointerfaces, 2016, 145, 301-308.	2.5	56
34	Evaluation of some important physicochemical properties of starch free grewia gum. Food Hydrocolloids, 2016, 53, 134-140.	5.6	23
35	In situ rheological measurements of the external gelation of alginate. Food Hydrocolloids, 2016, 55, 77-80.	5.6	28
36	Coarsening Mechanisms of Alkane-in-Water Okra Pectin Stabilized Emulsions. Special Publication - Royal Society of Chemistry, 2016, , 110-114.	0.0	0

VASSILIS KONTOGIORGOS

#	Article	IF	CITATIONS
37	Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods, 2015, 4, 690-697.	1.9	58
38	Influence of pH on mechanical relaxations in high solids LM-pectin preparations. Carbohydrate Polymers, 2015, 127, 182-188.	5.1	24
39	The parallel lives of polysaccharides in food and pharmaceutical formulations. Current Opinion in Food Science, 2015, 4, 13-18.	4.1	11
40	Isolation and characterization of acetylated LM-pectins extracted from okra pods. Food Hydrocolloids, 2015, 43, 726-735.	5.6	131
41	Relaxation dynamics in hydrated gluten networks. Journal of Cereal Science, 2014, 59, 101-108.	1.8	12
42	Okra extracts in pharmaceutical and food applications. Food Hydrocolloids, 2014, 42, 342-347.	5.6	91
43	Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight. Food Chemistry, 2013, 138, 630-637.	4.2	15
44	Okra extracts as emulsifiers for acidic emulsions. Food Research International, 2013, 54, 1730-1737.	2.9	71
45	Temperature Dependence of Relaxation Spectra for Self-Assembled Fibrillar Networks of 12-Hydroxystearic Acid in Canola Oil Organogels. Food Biophysics, 2012, 7, 132-137.	1.4	5
46	Rheological characterization of okra pectins. Food Hydrocolloids, 2012, 29, 356-362.	5.6	123
47	Fundamental considerations in the effect of molecular weight on the glass transition of the gelatin/cosolute system. Biopolymers, 2012, 97, 303-310.	1.2	4
48	Microstructure of hydrated gluten network. Food Research International, 2011, 44, 2582-2586.	2.9	78
49	Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight. International Journal of Biological Macromolecules, 2011, 49, 369-377.	3.6	57
50	Combined use of the free volume and coupling theories in the glass transition of polysaccharide/co-solute systems. Carbohydrate Polymers, 2011, 83, 926-933.	5.1	10
51	Temperature dependence of relaxation spectra for highly hydrated gluten networks. Journal of Cereal Science, 2010, 52, 100-105.	1.8	13
52	Calculation of relaxation spectra from mechanical spectra in MATLAB. Polymer Testing, 2010, 29, 1021-1025.	2.3	28
53	Polysaccharide determination in protein/polysaccharide mixtures for phase-diagram construction. Carbohydrate Polymers, 2010, 81, 849-854.	5.1	21
54	Phase behaviour of high molecular weight oat β-glucan/whey protein isolate binary mixtures. Food Hydrocolloids, 2009, 23, 949-956.	5.6	37

VASSILIS KONTOGIORGOS

#	Article	IF	CITATIONS
55	Kinetics of Phase Separation of Oat β-Glucan/Whey Protein Isolate Binary Mixtures. Food Biophysics, 2009, 4, 240-247.	1.4	11
56	Numerical computation of relaxation spectra from mechanical measurements in biopolymers. Food Research International, 2009, 42, 130-136.	2.9	20
57	Rheological investigation and molecular architecture of highly hydrated gluten networks at subzero temperatures. Journal of Food Engineering, 2008, 89, 42-48.	2.7	24
58	Effect of aging and ice-structuring proteins on the physical properties of frozen flour–water mixtures. Food Hydrocolloids, 2008, 22, 1135-1147.	5.6	61
59	Effect of Aging and Ice Structuring Proteins on the Morphology of Frozen Hydrated Cluten Networks. Biomacromolecules, 2007, 8, 1293-1299.	2.6	55
60	ISOLATION AND CHARACTERIZATION OF ICE STRUCTURING PROTEINS FROM COLD-ACCLIMATED WINTER WHEAT GRASS EXTRACT FOR RECRYSTALLIZATION INHIBITION IN FROZEN FOODS. Journal of Food Biochemistry, 2007, 31, 139-160.	1.2	37
61	A fractal analysis approach to viscoelasticity of physically cross-linked barley β-glucan gel networks. Colloids and Surfaces B: Biointerfaces, 2006, 49, 145-152.	2.5	29
62	Calorimetric and Microstructural Investigation of Frozen Hydrated Gluten. Food Biophysics, 2006, 1, 202-215.	1.4	42
63	Effect of barley β-glucan concentration on the microstructural and mechanical behaviour of acid-set sodium caseinate gels. Food Hydrocolloids, 2006, 20, 749-756.	5.6	39
64	Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal β-glucans of varying molecular size. Food Hydrocolloids, 2004, 18, 987-998.	5.6	71
65	Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal \$beta;-glucans of varying molecular size. Food Hydrocolloids, 2004, 18, 987-987.	5.6	0
66	Molecular weight effects on solution rheology of pullulan and mechanical properties of its films. Carbohydrate Polymers, 2003, 52, 151-166.	5.1	122
67	Calculation of Relaxation Spectra from Stress Relaxation Measurements. , 0, , .		3