
David M Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The limbic memory circuit and the neural basis of contextual memory. Neurobiology of Learning and Memory, 2022, 187, 107557.	1.0	8
2	Dual-Factor Representation of the Environmental Context in the Retrosplenial Cortex. Cerebral Cortex, 2021, 31, 2720-2728.	1.6	20
3	Hippocampal state transitions at the boundaries between trial epochs. Hippocampus, 2020, 30, 582-595.	0.9	12
4	The medial prefrontal cortex is needed for resolving interference even when there are no changes in task rules and strategies Behavioral Neuroscience, 2020, 134, 15-20.	0.6	8
5	Context-dependent odor learning requires the anterior olfactory nucleus Behavioral Neuroscience, 2020, 134, 332-343.	0.6	22
6	Retrosplenial Cortical Representations of Space and Future Goal Locations Develop with Learning. Current Biology, 2019, 29, 2083-2090.e4.	1.8	61
7	The retrosplenial cortical role in encoding behaviorally significant cues Behavioral Neuroscience, 2018, 132, 356-365.	0.6	21
8	Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation. Cerebral Cortex, 2017, 27, 3713-3723.	1.6	72
9	Network oscillatory activity driven by context memory processing is differently regulated by glutamatergic and cholinergic neurotransmission. Neurobiology of Learning and Memory, 2017, 145, 59-66.	1.0	12
10	Internal Cholinergic Regulation of Learning and Recall in a Model of Olfactory Processing. Frontiers in Cellular Neuroscience, 2016, 10, 256.	1.8	10
11	Placing memories in context: Hippocampal representations promote retrieval of appropriate memories. Hippocampus, 2016, 26, 958-971.	0.9	28
12	Basal forebrain dynamics during nonassociative and associative olfactory learning. Journal of Neurophysiology, 2016, 115, 423-433.	0.9	17
13	Slow stabilization of concurrently acquired hippocampal context representations. Hippocampus, 2016, 26, 1560-1569.	0.9	14
14	Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Frontiers in Human Neuroscience, 2014, 8, 586.	1.0	140
15	The form and function of hippocampal context representations. Neuroscience and Biobehavioral Reviews, 2014, 40, 52-61.	2.9	90
16	The hippocampus, medial prefrontal cortex, and selective memory retrieval: Evidence from a rodent model of the retrievalâ€induced forgetting effect. Hippocampus, 2014, 24, 1070-1080.	0.9	14
17	The medial prefrontal cortex is critical for memory retrieval and resolving interference. Learning and Memory, 2013, 20, 201-209.	0.5	60
18	The role of adult hippocampal neurogenesis in reducing interference Behavioral Neuroscience, 2012, 126, 381-391.	0.6	54

DAVID M SMITH

#	Article	IF	CITATIONS
19	A comparison of the effects of temporary hippocampal lesions on single and dual context versions of the olfactory sequence memory task Behavioral Neuroscience, 2012, 126, 588-592.	0.6	6
20	The anterior thalamus is critical for overcoming interference in a context-dependent odor discrimination task Behavioral Neuroscience, 2012, 126, 710-719.	0.6	38
21	Hippocampal context processing is critical for interference free recall of odor memories in rats. Hippocampus, 2012, 22, 906-913.	0.9	41
22	Complimentary roles of the hippocampus and retrosplenial cortex in behavioral context discrimination. Hippocampus, 2012, 22, 1121-1133.	0.9	77
23	Hippocampal episode fields develop with learning. Hippocampus, 2011, 21, 1240-1249.	0.9	87
24	Chapter 4.4 The hippocampus, context processing and episodic memory. Handbook of Behavioral Neuroscience, 2008, , 465-630.	0.7	5
25	Hippocampal and neocortical interactions during context discrimination: Electrophysiological evidence from the rat. Hippocampus, 2007, 17, 851-862.	0.9	22
26	Hippocampal place cells, context, and episodic memory. Hippocampus, 2006, 16, 716-729.	0.9	240
27	Learning-Related Development of Context-Specific Neuronal Responses to Places and Events: The Hippocampal Role in Context Processing. Journal of Neuroscience, 2006, 26, 3154-3163.	1.7	211
28	Fornix Lesions Impair Context-Related Cingulothalamic Neuronal Patterns and Concurrent Discrimination Learning in Rabbits (Oryctolagus cuniculus) Behavioral Neuroscience, 2004, 118, 1225-1239.	0.6	41
29	Limbic Thalamic Lesions, Appetitively Motivated Discrimination Learning, and Training-Induced Neuronal Activity in Rabbits. Journal of Neuroscience, 2002, 22, 8212-8221.	1.7	39
30	Medial Geniculate, Amygdalar and Cingulate Cortical Training-Induced Neuronal Activity during Discriminative Avoidance Learning in Rabbits with Auditory Cortical Lesions. Journal of Neuroscience, 2001, 21, 3271-3281.	1.7	28
31	What does the limbic memory circuit actually do?. Behavioral and Brain Sciences, 1999, 22, 451-451.	0.4	5