
Christian Häger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4863971/publications.pdf Version: 2024-02-01

<u>Chdistian ΗÃöfd</u>

#	Article	IF	CITATIONS
1	Benchmarking and Interpreting End-to-End Learning of MIMO and Multi-User Communication. IEEE Transactions on Wireless Communications, 2022, 21, 7287-7298.	9.2	7
2	Model-Based End-to-End Learning for WDM Systems With Transceiver Hardware Impairments. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-14.	2.9	9
3	Machine learning for long-haul optical systems. , 2022, , 43-64.		0
4	Periodicity-Enabled Size Reduction of Symbol Based Predistortion for High-Order QAM. Journal of Lightwave Technology, 2022, 40, 6168-6178.	4.6	7
5	Physics-Based Deep Learning for Fiber-Optic Communication Systems. IEEE Journal on Selected Areas in Communications, 2021, 39, 280-294.	14.0	51
6	Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation. Journal of Lightwave Technology, 2021, 39, 949-959.	4.6	20
7	Learned Decimation for Neural Belief Propagation Decoders : Invited Paper. , 2021, , .		6
8	Autoencoder-Based Unequal Error Protection Codes. IEEE Communications Letters, 2021, 25, 3575-3579.	4.1	5
9	Learning Physical-Layer Communication With Quantized Feedback. IEEE Transactions on Communications, 2020, 68, 645-653.	7.8	9
10	Decoding Reed–Muller Codes Using Redundant Code Constraints. , 2020, , .		24
11	Pruning Neural Belief Propagation Decoders. , 2020, , .		18
12	End-to-End Learning of Geometrical Shaping Maximizing Generalized Mutual Information. , 2020, , .		8
13	Revisiting Efficient Multi-Step Nonlinearity Compensation With Machine Learning: An Experimental Demonstration. Journal of Lightwave Technology, 2020, 38, 3114-3124.	4.6	31
14	Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation. , 2020, , .		7
15	Learned Belief-Propagation Decoding with Simple Scaling and SNR Adaptation. , 2019, , .		43
16	Reinforcement Learning for Channel Coding: Learned Bit-Flipping Decoding. , 2019, , .		24
17	Approaching Miscorrection-Free Performance of Product Codes With Anchor Decoding. IEEE Transactions on Communications, 2018, 66, 2797-2808.	7.8	36
18	On Low-Complexity Decoding of Product Codes for High-Throughput Fiber-Optic Systems. , 2018, , .		11

2

CHRISTIAN HÃ**g**er

#	Article	IF	CITATIONS
19	What Can Machine Learning Teach Us about Communications?. , 2018, , .		13
20	Decoding Reed-Muller Codes Using Minimum- Weight Parity Checks. , 2018, , .		32
21	ASIC Implementation of Time-Domain Digital Backpropagation with Deep-Learned Chromatic Dispersion Filters. , 2018, , .		10
22	Wideband Time-Domain Digital Backpropagation via Subband Processing and Deep Learning. , 2018, , .		3
23	Achievable Information Rates for Nonlinear Fiber Communication via End-to-end Autoencoder Learning. , 2018, , .		45
24	Deep Learning of the Nonlinear Schr $ ilde{A}\P$ dinger Equation in Fiber-Optic Communications. , 2018, , .		15
25	Nonlinear Interference Mitigation via Deep Neural Networks. , 2018, , .		41
26	Density Evolution for Deterministic Generalized Product Codes on the Binary Erasure Channel at High Rates. IEEE Transactions on Information Theory, 2017, 63, 4357-4378.	2.4	21
27	Miscorrection-free Decoding of Staircase Codes. , 2017, , .		3
28	Deterministic and ensemble-based spatially-coupled product codes. , 2016, , .		1
29	Density evolution for deterministic generalized product codes with higher-order modulation. , 2016, ,		3
30	On the Information Loss of the Max-Log Approximation in BICM Systems. IEEE Transactions on Information Theory, 2016, 62, 3011-3025.	2.4	18
31	Density Evolution and Error Floor Analysis for Staircase and Braided Codes. , 2016, , .		8
32	Spatially-coupled codes for optical communications: state-of-the-art and open problems. , 2015, , .		3
33	Terminated and Tailbiting Spatially Coupled Codes With Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems. Journal of Lightwave Technology, 2015, 33, 1275-1285.	4.6	18
34	On Parameter Optimization for Staircase Codes. , 2015, , .		12
35	Optimized bit mappings for spatially coupled LDPC codes over parallel binary erasure channels. , 2014, ,		9
36	Comparison of terminated and tailbiting spatially coupled LDPC codes with optimized bit mapping for PM-64-QAM. , 2014, , .		4

Christian HÃ**g**er

#	Article	IF	CITATIONS
37	A Low-Complexity Detector for Memoryless Polarization-Multiplexed Fiber-Optical Channels. IEEE Communications Letters, 2014, 18, 368-371.	4.1	0
38	Improving soft FEC performance for higher-order modulations via optimized bit channel mappings. Optics Express, 2014, 22, 14544.	3.4	67
39	Design of APSK Constellations for Coherent Optical Channels with Nonlinear Phase Noise. IEEE Transactions on Communications, 2013, 61, 3362-3373.	7.8	43
40	Constellation optimization for coherent optical channels distorted by nonlinear phase noise. , 2012, , .		7