
Seung-Jae Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4863839/publications.pdf Version: 2024-02-01

SELING-LAF LEF

#	Article	IF	CITATIONS
1	A Novel <scp><i>TFG</i></scp> Mutation in a Korean Family with <scp>α ynucleinopathy</scp> and Amyotrophic Lateral Sclerosis. Movement Disorders, 2022, 37, 384-391.	2.2	7
2	White matter-associated microglia: New players in brain aging and neurodegenerative diseases. Ageing Research Reviews, 2022, 75, 101574.	5.0	20
3	Senescence and impaired DNA damage responses in alpha-synucleinopathy models. Experimental and Molecular Medicine, 2022, 54, 115-128.	3.2	25
4	Conformation-specific Antibodies Targeting Aggregated Forms of α-synuclein Block the Propagation of Synucleinopathy. Experimental Neurobiology, 2022, 31, 29-41.	0.7	4
5	Chicago sky blue 6B inhibits α-synuclein aggregation and propagation. Molecular Brain, 2022, 15, 27.	1.3	2
6	TNF-α promotes α-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Experimental and Molecular Medicine, 2022, 54, 788-800.	3.2	18
7	Effects of innate immune receptor stimulation on extracellular α-synuclein uptake and degradation by brain resident cells. Experimental and Molecular Medicine, 2021, 53, 281-290.	3.2	21
8	Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson's disease-linked <i>DNAJC6</i> mutations. Science Advances, 2021, 7, .	4.7	52
9	Alpha-Synuclein Inclusion Formation in Human Oligodendrocytes. Biomolecules and Therapeutics, 2021, 29, 83-89.	1.1	5
10	The LRRK2-RAB axis in regulation of vesicle trafficking and α-synuclein propagation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165632.	1.8	21
11	LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Science Translational Medicine, 2020, 12, .	5.8	49
12	Reply: ARSA gene variants and Parkinson's disease. Brain, 2020, 143, e48-e48.	3.7	0
13	Arylsulfatase A, a genetic modifier of Parkinson's disease, is an α-synuclein chaperone. Brain, 2019, 142, 2845-2859.	3.7	44
14	Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nature Communications, 2019, 10, 5535.	5.8	153
15	Models of multiple system atrophy. Experimental and Molecular Medicine, 2019, 51, 1-10.	3.2	18
16	Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. Journal of Clinical Investigation, 2019, 129, 3738-3753.	3.9	126
17	Modeling α-Synuclein Propagation with Preformed Fibril Injections. Journal of Movement Disorders, 2019, 12, 139-151.	0.7	65
18	The Bodily Panic Symptoms and Predisposing Stressors in Korean Patients with Panic Disorder. Journal of Korean Neuropsychiatric Association, 2019, 58, 339.	0.2	1

#	Article	IF	CITATIONS
19	Non-cell-autonomous actions of α-synuclein: Implications in glial synucleinopathies. Progress in Neurobiology, 2018, 169, 158-171.	2.8	21
20	Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Molecular Neurodegeneration, 2018, 13, 43.	4.4	117
21	LRRK2 kinase regulates $\hat{l}\pm$ -synuclein propagation via RAB35 phosphorylation. Nature Communications, 2018, 9, 3465.	5.8	121
22	Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death and Disease, 2018, 9, 712.	2.7	133
23	Differential effects of immunotherapy with antibodies targeting α-synuclein oligomers and fibrils in a transgenic model of synucleinopathy. Neurobiology of Disease, 2017, 104, 85-96.	2.1	72
24	Amplification of distinct α-synuclein fibril conformers through protein misfolding cyclic amplification. Experimental and Molecular Medicine, 2017, 49, e314-e314.	3.2	39
25	Is trehalose an autophagic inducer? Unraveling the roles of non-reducing disaccharides on autophagic flux and alpha-synuclein aggregation. Cell Death and Disease, 2017, 8, e3091-e3091.	2.7	50
26	Are exosomes the vehicle for protein aggregate propagation in neurodegenerative diseases?. Acta Neuropathologica Communications, 2017, 5, 64.	2.4	56
27	Cell-to-cell Transmission of Polyglutamine Aggregates in <i>C. elegans</i> . Experimental Neurobiology, 2017, 26, 321-328.	0.7	19
28	Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2. Experimental Neurobiology, 2016, 25, 113-119.	0.7	77
29	Mechanism of Anti-α-Synuclein Immunotherapy. Journal of Movement Disorders, 2016, 9, 14-19.	0.7	41
30	Neuroinflammation in Synucleinopathies. Brain Pathology, 2016, 26, 404-409.	2.1	52
31	Mechanisms of aging-related proteinopathies in Caenorhabditis elegans. Experimental and Molecular Medicine, 2016, 48, e263-e263.	3.2	32
32	Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy, 2016, 12, 1849-1863.	4.3	59
33	Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Scientific Reports, 2016, 6, 30891.	1.6	113
34	Mesenchymal Stem Cells Inhibit Transmission of α-Synuclein by Modulating Clathrin-Mediated Endocytosis in a Parkinsonian Model. Cell Reports, 2016, 14, 835-849.	2.9	66
35	α-Synuclein interferes with the ESCRT-III complex contributing to the pathogenesis of Lewy body disease. Human Molecular Genetics, 2016, 25, 1100-1115.	1.4	45
36	Cell Models to Study Cell-to-Cell Transmission of α-Synuclein. Methods in Molecular Biology, 2016, 1345, 291-298.	0.4	7

#	Article	IF	CITATIONS
37	Extracellular α-Synuclein as a Target for Immunotherapy. Methods in Pharmacology and Toxicology, 2016, , 73-83.	0.1	0
38	FcÎ ³ RIIB mediates the inhibitory effect of aggregated α-synuclein on microglial phagocytosis. Neurobiology of Disease, 2015, 83, 90-99.	2.1	64
39	Aggregates feel the strain. Nature, 2015, 522, 296-297.	13.7	12
40	Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation. Experimental and Molecular Medicine, 2015, 47, e153-e153.	3.2	77
41	Generation and characterization of novel conformation-specific monoclonal antibodies for α-synuclein pathology. Neurobiology of Disease, 2015, 79, 81-99.	2.1	116
42	Antagonizing Neuronal Toll-like Receptor 2 Prevents Synucleinopathy by Activating Autophagy. Cell Reports, 2015, 13, 771-782.	2.9	113
43	ATP13A2/PARK9 Deficiency Neither Cause Lysosomal Impairment Nor Alter α-Synuclein Metabolism in SH-SY5Y Cells. Experimental Neurobiology, 2014, 23, 365-371.	0.7	8
44	β1-integrin-dependent migration of microglia in response to neuron-released α-synuclein. Experimental and Molecular Medicine, 2014, 46, e91-e91.	3.2	48
45	The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of Â-synuclein, and enhances its secretion and nuclear localization in cells. Human Molecular Genetics, 2014, 23, 4491-4509.	1.4	194
46	Extracellular α-synuclein—a novel and crucial factor in Lewy body diseases. Nature Reviews Neurology, 2014, 10, 92-98.	4.9	255
47	The H50Q Mutation Enhances α-Synuclein Aggregation, Secretion, and Toxicity. Journal of Biological Chemistry, 2014, 289, 21856-21876.	1.6	152
48	Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein. Nature Communications, 2014, 5, 4755.	5.8	157
49	Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nature Communications, 2013, 4, 1562.	5.8	634
50	The secreted oligomeric form of αâ€synuclein affects multiple steps of membrane trafficking. FEBS Letters, 2013, 587, 452-459.	1.3	25
51	Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein. Experimental and Molecular Medicine, 2013, 45, e22-e22.	3.2	163
52	Glucocerebrosidase, a new player changing the old rules in Lewy body diseases. Biological Chemistry, 2013, 394, 807-818.	1.2	14
53	Lipid Peroxidation Product 4-Hydroxy-2-Nonenal Promotes Seeding-Capable Oligomer Formation and Cell-to-Cell Transfer of α-Synuclein. Antioxidants and Redox Signaling, 2013, 18, 770-783.	2.5	99
54	LRRK2 as a Potential Genetic Modifier of Synucleinopathies: Interlacing the Two Major Genetic Factors of Parkinson's Disease. Experimental Neurobiology, 2013, 22, 249-257.	0.7	18

#	Article	IF	CITATIONS
55	Antibody-Aided Clearance of Extracellular α-Synuclein Prevents Cell-to-Cell Aggregate Transmission. Journal of Neuroscience, 2012, 32, 13454-13469.	1.7	290
56	Proteolytic Cleavage of Extracellular α-Synuclein by Plasmin. Journal of Biological Chemistry, 2012, 287, 24862-24872.	1.6	67
57	Cell-to-Cell Transmission of α-Synuclein Aggregates. Methods in Molecular Biology, 2012, 849, 347-359.	0.4	45
58	Dopamine promotes formation and secretion of non-fibrillar alpha-synuclein oligomers. Experimental and Molecular Medicine, 2011, 43, 216.	3.2	117
59	Protein aggregate spreading in neurodegenerative diseases: Problems and perspectives. Neuroscience Research, 2011, 70, 339-348.	1.0	154
60	Transmission of Synucleinopathies in the Enteric Nervous System of A53T Alpha-Synuclein Transgenic Mice. Experimental Neurobiology, 2011, 20, 181-188.	0.7	39
61	OASIS: Online Application for the Survival Analysis of Lifespan Assays Performed in Aging Research. PLoS ONE, 2011, 6, e23525.	1.1	259
62	Enzyme-linked immunosorbent assays for alpha-synuclein with species and multimeric state specificities. Journal of Neuroscience Methods, 2011, 199, 249-257.	1.3	24
63	Cell-to-cell transmission of non-prion protein aggregates. Nature Reviews Neurology, 2010, 6, 702-706.	4.9	269
64	Non lassical exocytosis of αâ€synuclein is sensitive to folding states and promoted under stress conditions. Journal of Neurochemistry, 2010, 113, 1263-1274.	2.1	241
65	Alpha-Synuclein Stimulation of Astrocytes: Potential Role for Neuroinflammation and Neuroprotection. Oxidative Medicine and Cellular Longevity, 2010, 3, 283-287.	1.9	133
66	Multiple non-cell autonomous actions of α-synuclein in neurodegenerative diseases. Cell Cycle, 2010, 9, 2696-2697.	1.3	6
67	Direct Transfer of α-Synuclein from Neuron to Astroglia Causes Inflammatory Responses in Synucleinopathies. Journal of Biological Chemistry, 2010, 285, 9262-9272.	1.6	704
68	Egr-1 Is Necessary for Fibroblast Growth Factor-2-induced Transcriptional Activation of the Glial Cell Line-derived Neurotrophic Factor in Murine Astrocytes. Journal of Biological Chemistry, 2009, 284, 30583-30593.	1.6	25
69	Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13010-13015.	3.3	1,308
70	Topographical Propagation of α-synuclein Pathology in Parkinson's Disease: Phenomenology and Hypothetical Mechanism. Experimental Neurobiology, 2009, 18, 19.	0.7	1
71	Origins and Effects of Extracellular α-synuclein: Implications in Parkinson's Disease. Journal of Molecular Neuroscience, 2008, 34, 17-22.	1.1	145
72	Controlling the mass action of αâ€synuclein in Parkinson's disease. Journal of Neurochemistry, 2008, 107, 303-316.	2.1	90

#	Article	IF	CITATIONS
73	Assembly-dependent endocytosis and clearance of extracellular a-synuclein. International Journal of Biochemistry and Cell Biology, 2008, 40, 1835-1849.	1.2	428
74	Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochemical and Biophysical Research Communications, 2008, 372, 423-428.	1.0	273
75	The role of calpains in ligand-induced degradation of the glucocorticoid receptor. Biochemical and Biophysical Research Communications, 2008, 374, 373-377.	1.0	4
76	Alpha-synuclein is localized in a subpopulation of rat brain synaptic vesicles. Acta Neurobiologiae Experimentalis, 2008, 68, 509-15.	0.4	31
77	Lack of direct role of parkin in the steady-state level and aggregation of α-synuclein and the clearance of pre-formed aggregates. Experimental Neurology, 2006, 197, 538-541.	2.0	6
78	Novel covalent modifications of α-synuclein during the recovery from proteasomal dysfunction. Biochemical and Biophysical Research Communications, 2006, 346, 1312-1319.	1.0	2
79	A Novel Mechanism of Interaction between α-Synuclein and Biological Membranes. Journal of Molecular Biology, 2006, 360, 386-397.	2.0	48
80	Impairment of microtubule-dependent trafficking by overexpression of α-synuclein. European Journal of Neuroscience, 2006, 24, 3153-3162.	1.2	142
81	Intravesicular Localization and Exocytosis of Â-Synuclein and its Aggregates. Journal of Neuroscience, 2005, 25, 6016-6024.	1.7	722
82	Clearance of Â-Synuclein Oligomeric Intermediates via the Lysosomal Degradation Pathway. Journal of Neuroscience, 2004, 24, 1888-1896.	1.7	383
83	α-Synuclein Aggregation: A Link Between Mitochondrial Defects and Parkinson's Disease?. Antioxidants and Redox Signaling, 2003, 5, 337-348.	2.5	43
84	PARK1 and α-Synuclein. , 2003, , 287-304.		0
85	Formation and Removal of α-Synuclein Aggregates in Cells Exposed to Mitochondrial Inhibitors. Journal of Biological Chemistry, 2002, 277, 5411-5417.	1.6	263
86	Characterization of Cytoplasmic α-Synuclein Aggregates. Journal of Biological Chemistry, 2002, 277, 48976-48983.	1.6	164
87	Membrane-bound α-Synuclein Has a High Aggregation Propensity and the Ability to Seed the Aggregation of the Cytosolic Form. Journal of Biological Chemistry, 2002, 277, 671-678.	1.6	411
88	Golgi Fragmentation Occurs in the Cells with Prefibrillar α-Synuclein Aggregates and Precedes the Formation of Fibrillar Inclusion. Journal of Biological Chemistry, 2002, 277, 48984-48992.	1.6	249
89	Annular α-Synuclein Protofibrils Are Produced When Spherical Protofibrils Are Incubated in Solution or Bound to Brain-Derived Membranesâ€. Biochemistry, 2002, 41, 10209-10217.	1.2	363
90	Vesicle Permeabilization by Protofibrillar α-Synuclein: Implications for the Pathogenesis and Treatment of Parkinson's Diseaseâ€. Biochemistry, 2001, 40, 7812-7819.	1.2	656

#	Article	IF	CITATIONS
91	Stabilization of Partially Folded Conformation during α-Synuclein Oligomerization in Both Purified and Cytosolic Preparations. Journal of Biological Chemistry, 2001, 276, 43495-43498.	1.6	164
92	A detergent-insoluble membrance compartment contains Aβ in vivo. Nature Medicine, 1998, 4, 730-734.	15.2	410
93	Homeodomain-interacting Protein Kinases, a Novel Family of Co-repressors for Homeodomain Transcription Factors. Journal of Biological Chemistry, 1998, 273, 25875-25879.	1.6	261
94	The Promoter Activity of the Phospholipase C-γ2 Gene Is Regulated by a Cell-Type-Specific Control Element. DNA and Cell Biology, 1997, 16, 485-492.	0.9	4
95	Overexpression of Phospholipase C-l³1 in Colorectal Carcinomas Is Associated with Overexpression of Factors That Bind Its Promoter. Journal of Biological Chemistry, 1995, 270, 16378-16384.	1.6	25
96	Down-regulation of phospholipase C-l³1 during the differentiation of U937 cells. FEBS Letters, 1995, 358, 105-108.	1.3	15
97	Cell Biology of α-Synuclein: Implications in Parkinson's Disease and Other Lewy Body Diseases. , 0, , 111-124.		0