Bernard Vanlauwe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486381/publications.pdf

Version: 2024-02-01

156 papers 9,466 citations

51 h-index 90 g-index

161 all docs

161 docs citations

times ranked

161

6190 citing authors

#	Article	IF	Citations
1	Assessment of sustainable land use: linking land management practices to sustainable land use indicators. International Journal of Agricultural Sustainability, 2022, 20, 265-288.	3.5	7
2	Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nature Communications, 2022, 13 , 330 .	12.8	17
3	Unravelling causes of poor crop response to applied N and P fertilizers on African soils. Experimental Agriculture, 2022, 58, .	0.9	5
4	Maize nutrient yield response and requirement in the maize belt of Nigeria. Environmental Research Letters, 2022, 17, 064025.	5.2	3
5	Indifferent to difference? Understanding the unequal impacts of farming technologies among smallholders. A review. Agronomy for Sustainable Development, 2022, 42, .	5.3	2
6	Assessing and understanding non-responsiveness of maize and soybean to fertilizer applications in African smallholder farms. Agriculture, Ecosystems and Environment, 2021, 305, 107165.	5.3	24
7	Market access and resource endowment define the soil fertility status of smallholder farming systems of Southâ€Kivu, DR Congo. Soil Use and Management, 2021, 37, 353-366.	4.9	4
8	How nutrient rich are decaying cocoa pod husks? The kinetics of nutrient leaching. Plant and Soil, 2021, 463, 155-170.	3.7	7
9	"That is my farm―– An integrated co-learning approach for whole-farm sustainable intensification in smallholder farming. Agricultural Systems, 2021, 188, 103041.	6.1	14
10	Measuring household legume cultivation intensity in sub-Saharan Africa. International Journal of Agricultural Sustainability, 2021, 19, 319-334.	3.5	5
11	Physico-chemical soil attributes under conservation agriculture and integrated soil fertility management. Nutrient Cycling in Agroecosystems, 2021, 120, 145.	2.2	6
12	The Phosphate Inhibition Paradigm: Host and Fungal Genotypes Determine Arbuscular Mycorrhizal Fungal Colonization and Responsiveness to Inoculation in Cassava With Increasing Phosphorus Supply. Frontiers in Plant Science, 2021, 12, 693037.	3.6	21
13	Agronomic gain: Definition, approach, and application. Field Crops Research, 2021, 270, 108193.	5.1	25
14	Understanding nutrient imbalances in maize (Zea mays L.) using the diagnosis and recommendation integrated system (DRIS) approach in the Maize belt of Nigeria. Scientific Reports, 2021, 11, 16018.	3.3	14
15	Quantifying the prevalence of (non)-response to fertilizers in sub-Saharan Africa using on-farm trial data. Nutrient Cycling in Agroecosystems, 2021, 121, 257-269.	2.2	6
16	Nutrient Deficiencies Are Key Constraints to Grain Legume Productivity on "Non-responsive―Soils in Sub-Saharan Africa. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	4
17	Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice in sub-Saharan Africa: A meta-analysis. PLoS ONE, 2020, 15, e0239552.	2.5	51
18	Are farmers using cropping system intensification technologies experiencing poverty reduction in the Great Lakes Region of Africa?. Food and Energy Security, 2020, 9, e205.	4.3	7

#	Article	IF	Citations
19	Reconciling yield gains in agronomic trials with returns under African smallholder conditions. Scientific Reports, 2020, 10, 14286.	3.3	18
20	Intensification options of small holders' cassava production in Southâ€west Nigeria. Agronomy Journal, 2020, 112, 5312-5324.	1.8	2
21	Genetically Different Isolates of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Induce Differential Responses to Stress in Cassava. Frontiers in Plant Science, 2020, 11, 596929.	3.6	4
22	The response of climbing bean to fertilizer and organic manure in the Northern Province of Rwanda. Experimental Agriculture, 2020, 56, 722-737.	0.9	5
23	Land Access in the Development of Horticultural Crops in East Africa. A Case Study of Passion Fruit in Burundi, Kenya, and Rwanda. Sustainability, 2020, 12, 3041.	3.2	3
24	Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda. Agricultural Systems, 2020, 183, 102857.	6.1	32
25	Maize production under combined Conservation Agriculture and Integrated Soil Fertility Management in the sub-humid and semi-arid regions of Kenya. Field Crops Research, 2020, 254, 107833.	5.1	28
26	Science-based decision support for formulating crop fertilizer recommendations in sub-Saharan Africa. Agricultural Systems, 2020, 180, 102790.	6.1	66
27	Mineral fertilizer use in land-scarce conditions: Case of Rwanda. Open Agriculture, 2020, 5, 690-702.	1.7	2
28	Banana leaf pruning to facilitate annual legume intercropping as an intensification strategy in the East African highlands. European Journal of Agronomy, 2019, 110, 125923.	4.1	15
29	Biophysical potential of crop residues for biochar carbon sequestration, and coâ€benefits, in Uganda. Ecological Applications, 2019, 29, e01984.	3.8	10
30	Variability of soybean response to rhizobia inoculant, vermicompost, and a legume-specific fertilizer blend in Siaya County of Kenya. Soil and Tillage Research, 2019, 194, 104290.	5.6	21
31	The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future. Agriculture, Ecosystems and Environment, 2019, 284, 106583.	5.3	118
32	Balanced nutrient requirements for maize in the Northern Nigerian Savanna: Parameterization and validation of QUEFTS model. Field Crops Research, 2019, 241, 107585.	5.1	27
33	Impact of arbuscular mycorrhizal fungi and earthworms on soil aggregate stability, glomalin, and performance of pigeonpea, Cajanus cajan. Soil Research, 2019, 57, 53.	1.1	10
34	Nutrient use efficiency and crop yield response to the combined application of cattle manure and inorganic fertilizer in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2019, 113, 181-199.	2.2	47
35	Long-term application of low C:N residues enhances maize yield and soil nutrient pools across Kenya. Nutrient Cycling in Agroecosystems, 2019, 114, 261-276.	2.2	18
36	Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, 2019, 235, 18-26.	5.1	144

#	Article	IF	Citations
37	Farmer adoption of plot- and farm-level natural resource management practices: Between rhetoric and reality. Global Food Security, 2019, 20, 101-104.	8.1	30
38	Farmers' preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria. Agricultural Systems, 2019, 173, 12-26.	6.1	41
39	FROM BEST FIT TECHNOLOGIES TO BEST FIT SCALING: INCORPORATING AND EVALUATING FACTORS AFFECTING THE ADOPTION OF GRAIN LEGUMES IN SUB-SAHARAN AFRICA. Experimental Agriculture, 2019, 55, 226-251.	0.9	7
40	POOR FARMERS – POOR YIELDS: SOCIO-ECONOMIC, SOIL FERTILITY AND CROP MANAGEMENT INDICATORS AFFECTING CLIMBING BEAN PRODUCTIVITY IN NORTHERN RWANDA. Experimental Agriculture, 2019, 55, 14-34.	0.9	29
41	BEYOND AVERAGES: NEW APPROACHES TO UNDERSTAND HETEROGENEITY AND RISK OF TECHNOLOGY SUCCESS OR FAILURE IN SMALLHOLDER FARMING. Experimental Agriculture, 2019, 55, 84-106.	0.9	52
42	Evaluation of MALDI-TOF mass spectrometry for the competitiveness analysis of selected indigenous cowpea (Vigna unguiculata L. Walp.) Bradyrhizobium strains from Kenya. Applied Microbiology and Biotechnology, 2018, 102, 5265-5278.	3.6	8
43	Reducing spatial variability of soybean response to rhizobia inoculants in farms of variable soil fertility in Siaya County of western Kenya. Agriculture, Ecosystems and Environment, 2018, 261, 153-160.	5.3	18
44	Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems and Environment, 2018, 261, 161-171.	5.3	45
45	Xanthomonas Wilt of Banana (BXW) in Central Africa: Opportunities, challenges, and pathways for citizen science and ICT-based control and prevention strategies. Njas - Wageningen Journal of Life Sciences, 2018, 86-87, 89-100.	7.7	37
46	Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs. Agricultural Systems, 2018, 163, 16-26.	6.1	45
47	Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agriculture, Ecosystems and Environment, 2018, 261, 172-185.	5.3	141
48	Benefits of inoculation, P fertilizer and manure on yields of common bean and soybean also increase yield of subsequent maize. Agriculture, Ecosystems and Environment, 2018, 261, 219-229.	5.3	50
49	Soyabean response to rhizobium inoculation across sub-Saharan Africa: Patterns of variation and the role of promiscuity. Agriculture, Ecosystems and Environment, 2018, 261, 211-218.	5.3	38
50	Response of common bean (Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe. Agriculture, Ecosystems and Environment, 2018, 266, 167-173.	5.3	62
51	Dilemma of nitrogen management for future food security in sub-Saharan Africa – a review. Soil Research, 2017, 55, 425.	1.1	42
52	Looking back and moving forward: 50 years of soil and soil fertility management research in sub-Saharan Africa. International Journal of Agricultural Sustainability, 2017, 15, 613-631.	3.5	38
53	Facultative nitrogen fixation by legumes in the central Congo basin is downregulated during late successional stages. Biotropica, 2016, 48, 281-284.	1.6	33
54	Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation. Agricultural Systems, 2016, 145, 165-176.	6.1	102

#	Article	IF	CITATIONS
55	Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers' fields in northern Nigeria. Field Crops Research, 2016, 186, 133-145.	5.1	119
56	Phosphorus in smallholder farming systems of sub-Saharan Africa: implications for agricultural intensification. Nutrient Cycling in Agroecosystems, 2016, 104, 321-340.	2.2	98
57	Integrated soil fertility management: from concept to practice in Eastern DR Congo. International Journal of Agricultural Sustainability, 2016, 14, 100-118.	3.5	28
58	Soil fertility decline at the base of rural poverty in sub-Saharan Africa. Nature Plants, 2015, 1, 15101.	9.3	36
59	Response of maize (<i>Zea mays</i>) to the application of foliar fertilizers in the Sudan and Guinea savanna zone of Nigeria. Journal of Plant Nutrition and Soil Science, 2015, 178, 374-383.	1.9	11
60	Soil Organic Matter and Soil Fertility. SSSA Special Publication Series, 2015, , 69-89.	0.2	7
61	Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil, 2015, 1, 491-508.	4.9	263
62	Beyond conservation agriculture. Frontiers in Plant Science, 2015, 6, 870.	3.6	269
63	ENHANCING MAIZE PRODUCTIVITY AND PROFITABILITY USING ORGANIC INPUTS AND MINERAL FERTILIZER IN CENTRAL KENYA SMALL-HOLD FARMS. Experimental Agriculture, 2014, 50, 250-269.	0.9	82
64	Resource use and food self-sufficiency at farm scale within two agro-ecological zones of Rwanda. Food Security, 2014, 6, 609-628.	5.3	18
65	A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 2014, 155, 10-13.	5.1	265
66	Residual phosphorus effects and nitrogenÂ×Âphosphorus interactions in soybean–maize rotations on a P-deficient Ferralsol. Nutrient Cycling in Agroecosystems, 2014, 98, 187-201.	2.2	8
67	Benefits of legume–maize rotations: Assessing the impact of diversity on the productivity of smallholders in Western Kenya. Field Crops Research, 2014, 168, 75-85.	5.1	55
68	The †One cow per poor family' programme: Current and potential fodder availability within smallholder farming systems in southwest Rwanda. Agricultural Systems, 2014, 131, 11-22.	6.1	34
69	Sustainable intensification and the African smallholder farmer. Current Opinion in Environmental Sustainability, 2014, 8, 15-22.	6.3	260
70	Managing Tephrosia mulch and fertilizer to enhance coffee productivity on smallholder farms in the Eastern African Highlands. European Journal of Agronomy, 2013, 48, 19-29.	4.1	16
71	Influence of plant density on variability of soil fertility and nutrient budgets in low input East African highland banana (Musa spp. AAA-EA) cropping systems. Nutrient Cycling in Agroecosystems, 2013, 95, 187-202.	2.2	2
72	Partial substitution of phosphorus fertiliser by farmyard manure and its localised application increases agronomic efficiency and profitability of maize production. Field Crops Research, 2013, 140, 32-43.	5.1	50

#	Article	IF	CITATIONS
73	Ecological characteristics and cultivar influence optimal plant density of East African highland bananas (Musa spp., AAA-EA) in low input cropping systems. Scientia Horticulturae, 2013, 150, 299-311.	3.6	8
74	Nutrient imbalance and yield limiting factors of low input East African highland banana (Musa spp.) Tj ETQq0 0	0 rg <u>B</u> Ţ /Ον	verlock 10 Tf 5
75	Soil Heterogeneity and Soil Fertility Gradients in Smallholder Farms of the East African Highlands. Soil Science Society of America Journal, 2013, 77, 525-538.	2.2	73
76	Combining Mineral Fertilizer and Green Manure for Increased, Profitable Cassava Production. Agronomy Journal, 2012, 104, 178-187.	1.8	26
77	The impact of Desmodium spp. and cutting regimes on the agronomic and economic performance of Desmodium–maize intercropping system in western Kenya. Field Crops Research, 2012, 137, 97-107.	5.1	15
78	Socio-Ecological Niches for Minimum Tillage and Crop-Residue Retention in Continuous Maize Cropping Systems in Smallholder Farms of Central Kenya. Agronomy Journal, 2012, 104, 188-198.	1.8	31
79	Long-Term Integrated Soil Fertility Management in South-Western Nigeria: Crop Performance and Impact on the Soil Fertility Status. , 2012, , 175-200.		6
80	Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology, 2011, 48, 53-62.	4.3	112
81	Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agricultural Systems, 2011, 104, 191-203.	6.1	339
82	Increased productivity through integrated soil fertility management in cassava–legume intercropping systems in the highlands of Sud-Kivu, DR Congo. Field Crops Research, 2011, 120, 76-85.	5.1	98
83	Production gradients in smallholder banana (cv. Giant Cavendish) farms in Central Kenya. Scientia Horticulturae, 2011, 127, 475-481.	3.6	25
84	Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology and Biochemistry, 2011, 43, 657-666.	8.8	153
85	Trade-offs between the short- and long-term effects of residue quality on soil C and N dynamics. Plant and Soil, 2011, 338, 159-169.	3.7	61
86	Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 2011, 339, 35-50.	3.7	309
87	Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant and Soil, 2011, 342, 1-30.	3.7	210
88	Effect of intercropping maize and soybeans on Striga hermonthicaparasitism and yield of maize. Archives of Phytopathology and Plant Protection, 2011, 44, 158-167.	1.3	23
89	Targeting Resources Within Diverse, Heterogeneous and Dynamic Farming Systems: Towards a â€'Uniquely African Green Revolution'. , 2011, , 747-758.		8
90	Interaction Between Resource Quality, Aggregate Turnover, Carbon and Nitrogen Cycling in the Central Highlands of Kenya., 2011,, 807-816.		1

#	Article	IF	CITATIONS
91	Residue quality and N fertilizer do not influence aggregate stabilization of C and N in two tropical soils with contrasting texture. Nutrient Cycling in Agroecosystems, 2010, 88, 121-131.	2.2	53
92	Nitrogen and phosphorus capture and recovery efficiencies, and crop responses to a range of soil fertility management strategies in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2010, 88, 59-77.	2.2	36
93	Economic analysis of different options in integrated pest and soil fertility management in maize systems of Western Kenya. Agricultural Economics (United Kingdom), 2010, 41, 471-482.	3.9	37
94	STRATEGIC PHOSPHORUS APPLICATION IN LEGUME-CEREAL ROTATIONS INCREASES LAND PRODUCTIVITY AND PROFITABILITY IN WESTERN KENYA. Experimental Agriculture, 2010, 46, 35-52.	0.9	34
95	Integrated Soil Fertility Management. Outlook on Agriculture, 2010, 39, 17-24.	3.4	423
96	The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa $\hat{a} \in A$ typology of smallholder farms. Agricultural Systems, 2010, 103, 83-97.	6.1	296
97	Participatory evaluation of integrated pest and soil fertility management options using ordered categorical data analysis. Agricultural Systems, 2010, 103, 233-244.	6.1	29
98	Organic and Mineral Input Management to Enhance Crop Productivity in Central Kenya. Agronomy Journal, 2009, 101, 1266-1275.	1.8	65
99	Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agriculture, Ecosystems and Environment, 2009, 131, 308-314.	5.3	105
100	Effects of Plant Age and Rock Phosphate on Quality and Nutrient Release of Legume Residue. Pedosphere, 2009, 19, 78-85.	4.0	8
101	Fertilizer and Residue Quality Effects on Organic Matter Stabilization in Soil Aggregates. Soil Science Society of America Journal, 2009, 73, 961-966.	2.2	96
102	Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil, 2008, 313, 19-37.	3.7	157
103	Potential nutrient supply, nutrient utilization efficiencies, fertilizer recovery rates and maize yield in northern Nigeria. Nutrient Cycling in Agroecosystems, 2008, 80, 161-172.	2.2	15
104	Plant age and rock phosphate effects on the organic resource quality of herbaceous legume residues and their N and P release dynamics. Agronomy for Sustainable Development, 2008, 28, 429-437.	5.3	5
105	Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crops Research, 2008, 107, 102-115.	5.1	59
106	Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biology and Biochemistry, 2008, 40, 2375-2384.	8.8	156
107	Aggregating field-scale knowledge into farm-scale models of African smallholder systems: Summary functions to simulate crop production using APSIM. Agricultural Systems, 2008, 97, 151-166.	6.1	35
108	Combining Organic and Mineral Fertilizers for Integrated Soil Fertility Management in Smallholder Farming Systems of Kenya: Explorations Using the Cropâ€Soil Model FIELD. Agronomy Journal, 2008, 100, 1511-1526.	1.8	72

#	Article	IF	Citations
109	Soil Climate and Decomposer Activity in Sub-Saharan Africa Estimated from Standard Weather Station Data: A Simple Climate Index for Soil Carbon Balance Calculations. Ambio, 2007, 36, 379-386.	5.5	29
110	Heterogeneity of crop productivity and resource use efficiency within smallholder Kenyan farms: Soil fertility gradients or management intensity gradients?. Agricultural Systems, 2007, 94, 376-390.	6.1	127
111	Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms. Plant and Soil, 2007, 292, 119-135.	3.7	91
112	Within-farm soil fertility gradients affect response of maize to fertiliser application in western Kenya. Nutrient Cycling in Agroecosystems, 2007, 76, 171-182.	2.2	126
113	Within-farm soil fertility gradients affect response of maize to fertiliser application in western Kenya. , 2007, , 121-132.		7
114	Optimising crop productivity in legume-cereal rotations through nitrogen and phosphorus management in western Kenya., 2007,, 493-502.		2
115	Balanced Nutrient Management System Technologies In The Northern Guinea Savanna Of Nigeria: Validation And Perspective., 2007,, 669-678.		1
116	Socio-ecological niche: a conceptual framework for integration of legumes in smallholder farming systems. International Journal of Agricultural Sustainability, 2006, 4, 79-93.	3. 5	113
117	Exploring diversity of crop and soil management within smallholder African farms: A dynamic model for simulation of N balances and use efficiencies at field scale. Agricultural Systems, 2006, 91, 71-101.	6.1	39
118	Integrated Soil Fertility Management in Africa. Books in Soils, Plants, and the Environment, 2006, , 257-272.	0.1	6
119	Popular myths around soil fertility management in sub-Saharan Africa. Agriculture, Ecosystems and Environment, 2006, 116, 34-46.	5.3	258
120	Exploring diversity in soil fertility management of smallholder farms in western Kenya. Agriculture, Ecosystems and Environment, 2005, 110, 149-165.	5.3	215
121	Exploring diversity in soil fertility management of smallholder farms in western Kenya. Agriculture, Ecosystems and Environment, 2005, 110, 166-184.	5.3	202
122	Senna siamea trees recycle Ca from a Ca-rich subsoil and increase the topsoil pH in agroforestry systems in the West African derived savanna zone. Plant and Soil, 2005, 269, 285-296.	3.7	27
123	Long-term integrated soil fertility management in South-western Nigeria: Crop performance and impact on the soil fertility status. Plant and Soil, 2005, 273, 337-354.	3.7	43
124	Decomposition and Mineralization of Organic Residues Predicted Using Near Infrared Spectroscopy. Plant and Soil, 2005, 277, 315-333.	3.7	43
125	Laboratory Validation of a Resource Qualityâ€Based Conceptual Framework for Organic Matter Management. Soil Science Society of America Journal, 2005, 69, 1135-1145.	2.2	59
126	Long-term soil organic carbon dynamics in a subhumid tropical climate: 13C data in mixed C3/C4 cropping and modeling with ROTHC. Soil Biology and Biochemistry, 2004, 36, 1739-1750.	8.8	70

#	Article	IF	CITATIONS
127	The distribution of phosphorus fractions and desorption characteristics of some soils in the moist savanna zone of West Africa. Nutrient Cycling in Agroecosystems, 2004, 69, 127-141.	2.2	19
128	Sustainable resource management coupled to resilient germplasm to provide new intensive cereal–grain–legume–livestock systems in the dry savanna. Agriculture, Ecosystems and Environment, 2003, 100, 305-314.	5. 3	134
129	Prospects for integrated soil fertility management using organic and inorganic inputs: evidence from smallholder African agricultural systems. Food Policy, 2003, 28, 365-378.	6.0	183
130	Rapid Characterization of Organic Resource Quality for Soil and Livestock Management in Tropical Agroecosystems Using Nearâ€Infrared Spectroscopy. Agronomy Journal, 2003, 95, 1314-1322.	1.8	108
131	Title is missing!. Agroforestry Systems, 2002, 54, 1-12.	2.0	16
132	Title is missing!. Nutrient Cycling in Agroecosystems, 2002, 62, 139-150.	2.2	30
133	Title is missing!. Plant and Soil, 2002, 241, 223-231.	3.7	40
134	Organic resource management in sub-Saharan Africa: validation of a residue quality-driven decision support system. Agronomy for Sustainable Development, 2002, 22, 839-846.	0.8	29
135	Maize Yield as Affected by Organic Inputs and Urea in the West African Moist Savanna. Agronomy Journal, 2001, 93, 1191-1199.	1.8	96
136	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 59, 129-141.	2.2	49
137	Title is missing!. Plant and Soil, 2001, 231, 187-199.	3.7	15
138	Title is missing!. Agroforestry Systems, 2001, 53, 21-30.	2.0	8
139	Title is missing!. Plant and Soil, 2001, 228, 61-71.	3.7	30
140	Nitrogen and phosphorus uptake by maize as affected by particulate organic matter quality, soil characteristics, and land-use history for soils from the West African moist savanna zone. Biology and Fertility of Soils, 2000, 30, 440-449.	4.3	32
141	Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by Mucuna pruriens, Lablab purpureus and maize. Soil Biology and Biochemistry, 2000, 32, 2063-2077.	8.8	64
142	Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by maize to previous herbaceous legume cropping and rock phosphate treatments. Soil Biology and Biochemistry, 2000, 32, 2079-2090.	8.8	54
143	Spatial and temporal gradients of earthworm casting activity in alley cropping systems. Agroforestry Systems, 1998, 41, 127-137.	2.0	18
144	Title is missing!. Agroforestry Systems, 1998, 42, 213-227.	2.0	28

#	Article	lF	CITATION
145	Title is missing!. Agroforestry Systems, 1998, 42, 229-244.	2.0	17
146	Title is missing!. Agroforestry Systems, 1998, 42, 245-264.	2.0	29
147	Mineral N dynamics in bare and cropped Leucaena leucocephala and Dactyladenia barteri alley cropping systems after the addition of 15 N-labelled leaf residues. European Journal of Soil Science, 1998, 49, 417-425.	3.9	13
148	Recovery of Leucaena and Dactyladenia Residue Nitrogen-15 in Alley Cropping Systems. Soil Science Society of America Journal, 1998, 62, 454.	2.2	58
149	Soil Organic Matter Dynamics after Addition of Nitrogen-15-Labeled Leucaena and Dactyladenia Residues. Soil Science Society of America Journal, 1998, 62, 461.	2.2	55
150	Decomposition of four Leucaena and Senna prunings in alley cropping systems under sub-humid tropical conditions: The process and its modifiers. Soil Biology and Biochemistry, 1997, 29, 131-137.	8.8	53
151	Soil litter dynamics and N use in a leucaena (Leucaena leucocephala Lam. (de Witt)) alley cropping system in Southwestern Nigeria. Soil Biology and Biochemistry, 1996, 28, 739-749.	8.8	31
152	Impact of residue quality on the C and N mineralization of leaf and root residues of three agroforestry species. Plant and Soil, 1996, 183, 221-231.	3.7	111
153	Evaluation of symbiotic properties and nitrogen contribution of mucuna to maize grown in the derived savanna of West Africa. Plant and Soil, 1996, 179, 119-129.	3.7	72
154	Management of biological N2 fixation in alley cropping systems: Estimation and contribution to N balance. Plant and Soil, 1995, 174, 119-141.	3.7	97
155	Combined Application of Organic Matter and Fertilizer. SSSA Special Publication Series, 0, , 247-279.	0.2	45
156	Integrated management of Striga gesnerioides in cowpea using resistant varieties, improved crop	3.7	5