Bernard Vanlauwe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated Soil Fertility Management. Outlook on Agriculture, 2010, 39, 17-24.	3.4	423
2	Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agricultural Systems, 2011, 104, 191-203.	6.1	339
3	Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 2011, 339, 35-50.	3.7	309
4	The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa – A typology of smallholder farms. Agricultural Systems, 2010, 103, 83-97.	6.1	296
5	Beyond conservation agriculture. Frontiers in Plant Science, 2015, 6, 870.	3.6	269
6	A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 2014, 155, 10-13.	5.1	265
7	Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil, 2015, 1, 491-508.	4.9	263
8	Sustainable intensification and the African smallholder farmer. Current Opinion in Environmental Sustainability, 2014, 8, 15-22.	6.3	260
9	Popular myths around soil fertility management in sub-Saharan Africa. Agriculture, Ecosystems and Environment, 2006, 116, 34-46.	5.3	258
10	Exploring diversity in soil fertility management of smallholder farms in western Kenya. Agriculture, Ecosystems and Environment, 2005, 110, 149-165.	5.3	215
11	Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant and Soil, 2011, 342, 1-30.	3.7	210
12	Exploring diversity in soil fertility management of smallholder farms in western Kenya. Agriculture, Ecosystems and Environment, 2005, 110, 166-184.	5.3	202
13	Prospects for integrated soil fertility management using organic and inorganic inputs: evidence from smallholder African agricultural systems. Food Policy, 2003, 28, 365-378.	6.0	183
14	Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil, 2008, 313, 19-37.	3.7	157
15	Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biology and Biochemistry, 2008, 40, 2375-2384.	8.8	156
16	Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology and Biochemistry, 2011, 43, 657-666.	8.8	153
17	Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, 2019, 235, 18-26.	5.1	144
18	Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agriculture, Ecosystems and Environment, 2018, 261, 172-185.	5.3	141

#	Article	IF	CITATIONS
19	Sustainable resource management coupled to resilient germplasm to provide new intensive cereal–grain–legume–livestock systems in the dry savanna. Agriculture, Ecosystems and Environment, 2003, 100, 305-314.	5.3	134
20	Heterogeneity of crop productivity and resource use efficiency within smallholder Kenyan farms: Soil fertility gradients or management intensity gradients?. Agricultural Systems, 2007, 94, 376-390.	6.1	127
21	Within-farm soil fertility gradients affect response of maize to fertiliser application in western Kenya. Nutrient Cycling in Agroecosystems, 2007, 76, 171-182.	2.2	126
22	Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers' fields in northern Nigeria. Field Crops Research, 2016, 186, 133-145.	5.1	119
23	The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future. Agriculture, Ecosystems and Environment, 2019, 284, 106583.	5.3	118
24	Socio-ecological niche: a conceptual framework for integration of legumes in smallholder farming systems. International Journal of Agricultural Sustainability, 2006, 4, 79-93.	3.5	113
25	Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology, 2011, 48, 53-62.	4.3	112
26	Impact of residue quality on the C and N mineralization of leaf and root residues of three agroforestry species. Plant and Soil, 1996, 183, 221-231.	3.7	111
27	Rapid Characterization of Organic Resource Quality for Soil and Livestock Management in Tropical Agroecosystems Using Nearâ€Infrared Spectroscopy. Agronomy Journal, 2003, 95, 1314-1322.	1.8	108
28	Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agriculture, Ecosystems and Environment, 2009, 131, 308-314.	5.3	105
29	Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation. Agricultural Systems, 2016, 145, 165-176.	6.1	102
30	Increased productivity through integrated soil fertility management in cassava–legume intercropping systems in the highlands of Sud-Kivu, DR Congo. Field Crops Research, 2011, 120, 76-85.	5.1	98
31	Phosphorus in smallholder farming systems of sub-Saharan Africa: implications for agricultural intensification. Nutrient Cycling in Agroecosystems, 2016, 104, 321-340.	2.2	98
32	Management of biological N2 fixation in alley cropping systems: Estimation and contribution to N balance. Plant and Soil, 1995, 174, 119-141.	3.7	97
33	Maize Yield as Affected by Organic Inputs and Urea in the West African Moist Savanna. Agronomy Journal, 2001, 93, 1191-1199.	1.8	96
34	Fertilizer and Residue Quality Effects on Organic Matter Stabilization in Soil Aggregates. Soil Science Society of America Journal, 2009, 73, 961-966.	2.2	96
35	Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms. Plant and Soil, 2007, 292, 119-135.	3.7	91
36	ENHANCING MAIZE PRODUCTIVITY AND PROFITABILITY USING ORGANIC INPUTS AND MINERAL FERTILIZER IN CENTRAL KENYA SMALL-HOLD FARMS. Experimental Agriculture, 2014, 50, 250-269.	0.9	82

#	Article	IF	CITATIONS
37	Soil Heterogeneity and Soil Fertility Gradients in Smallholder Farms of the East African Highlands. Soil Science Society of America Journal, 2013, 77, 525-538.	2.2	73
38	Evaluation of symbiotic properties and nitrogen contribution of mucuna to maize grown in the derived savanna of West Africa. Plant and Soil, 1996, 179, 119-129.	3.7	72
39	Combining Organic and Mineral Fertilizers for Integrated Soil Fertility Management in Smallholder Farming Systems of Kenya: Explorations Using the Cropâ€Soil Model FIELD. Agronomy Journal, 2008, 100, 1511-1526.	1.8	72
40	Long-term soil organic carbon dynamics in a subhumid tropical climate: 13C data in mixed C3/C4 cropping and modeling with ROTHC. Soil Biology and Biochemistry, 2004, 36, 1739-1750.	8.8	70
41	Science-based decision support for formulating crop fertilizer recommendations in sub-Saharan Africa. Agricultural Systems, 2020, 180, 102790.	6.1	66
42	Organic and Mineral Input Management to Enhance Crop Productivity in Central Kenya. Agronomy Journal, 2009, 101, 1266-1275.	1.8	65
43	Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by Mucuna pruriens, Lablab purpureus and maize. Soil Biology and Biochemistry, 2000, 32, 2063-2077.	8.8	64
44	Response of common bean (Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe. Agriculture, Ecosystems and Environment, 2018, 266, 167-173.	5.3	62
45	Trade-offs between the short- and long-term effects of residue quality on soil C and N dynamics. Plant and Soil, 2011, 338, 159-169.	3.7	61
46	Laboratory Validation of a Resource Qualityâ€Based Conceptual Framework for Organic Matter Management. Soil Science Society of America Journal, 2005, 69, 1135-1145.	2.2	59
47	Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crops Research, 2008, 107, 102-115.	5.1	59
48	Recovery of Leucaena and Dactyladenia Residue Nitrogen-15 in Alley Cropping Systems. Soil Science Society of America Journal, 1998, 62, 454.	2.2	58
49	Soil Organic Matter Dynamics after Addition of Nitrogen-15-Labeled Leucaena and Dactyladenia Residues. Soil Science Society of America Journal, 1998, 62, 461.	2.2	55
50	Benefits of legume–maize rotations: Assessing the impact of diversity on the productivity of smallholders in Western Kenya. Field Crops Research, 2014, 168, 75-85.	5.1	55
51	Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by maize to previous herbaceous legume cropping and rock phosphate treatments. Soil Biology and Biochemistry, 2000, 32, 2079-2090.	8.8	54
52	Decomposition of four Leucaena and Senna prunings in alley cropping systems under sub-humid tropical conditions: The process and its modifiers. Soil Biology and Biochemistry, 1997, 29, 131-137.	8.8	53
53	Residue quality and N fertilizer do not influence aggregate stabilization of C and N in two tropical soils with contrasting texture. Nutrient Cycling in Agroecosystems, 2010, 88, 121-131.	2.2	53
54	BEYOND AVERAGES: NEW APPROACHES TO UNDERSTAND HETEROGENEITY AND RISK OF TECHNOLOGY SUCCESS OR FAILURE IN SMALLHOLDER FARMING. Experimental Agriculture, 2019, 55, 84-106.	0.9	52

#	Article	IF	CITATIONS
55	Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice in sub-Saharan Africa: A meta-analysis. PLoS ONE, 2020, 15, e0239552.	2.5	51
56	Partial substitution of phosphorus fertiliser by farmyard manure and its localised application increases agronomic efficiency and profitability of maize production. Field Crops Research, 2013, 140, 32-43.	5.1	50
57	Benefits of inoculation, P fertilizer and manure on yields of common bean and soybean also increase yield of subsequent maize. Agriculture, Ecosystems and Environment, 2018, 261, 219-229.	5.3	50
58	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 59, 129-141.	2.2	49
59	Nutrient use efficiency and crop yield response to the combined application of cattle manure and inorganic fertilizer in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2019, 113, 181-199.	2.2	47
60	Combined Application of Organic Matter and Fertilizer. SSSA Special Publication Series, 0, , 247-279.	0.2	45
61	Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems and Environment, 2018, 261, 161-171.	5.3	45
62	Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs. Agricultural Systems, 2018, 163, 16-26.	6.1	45
63	Long-term integrated soil fertility management in South-western Nigeria: Crop performance and impact on the soil fertility status. Plant and Soil, 2005, 273, 337-354.	3.7	43
64	Decomposition and Mineralization of Organic Residues Predicted Using Near Infrared Spectroscopy. Plant and Soil, 2005, 277, 315-333.	3.7	43
65	Dilemma of nitrogen management for future food security in sub-Saharan Africa – a review. Soil Research, 2017, 55, 425.	1.1	42
66	Farmers' preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria. Agricultural Systems, 2019, 173, 12-26.	6.1	41
67	Title is missing!. Plant and Soil, 2002, 241, 223-231.	3.7	40
68	Exploring diversity of crop and soil management within smallholder African farms: A dynamic model for simulation of N balances and use efficiencies at field scale. Agricultural Systems, 2006, 91, 71-101.	6.1	39
69	Looking back and moving forward: 50 years of soil and soil fertility management research in sub-Saharan Africa. International Journal of Agricultural Sustainability, 2017, 15, 613-631.	3.5	38
70	Soyabean response to rhizobium inoculation across sub-Saharan Africa: Patterns of variation and the role of promiscuity. Agriculture, Ecosystems and Environment, 2018, 261, 211-218.	5.3	38
71	Economic analysis of different options in integrated pest and soil fertility management in maize systems of Western Kenya. Agricultural Economics (United Kingdom), 2010, 41, 471-482.	3.9	37
72	Xanthomonas Wilt of Banana (BXW) in Central Africa: Opportunities, challenges, and pathways for citizen science and ICT-based control and prevention strategies. Njas - Wageningen Journal of Life Sciences, 2018, 86-87, 89-100.	7.7	37

#	Article	IF	CITATIONS
73	Nitrogen and phosphorus capture and recovery efficiencies, and crop responses to a range of soil fertility management strategies in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2010, 88, 59-77.	2.2	36
74	Soil fertility decline at the base of rural poverty in sub-Saharan Africa. Nature Plants, 2015, 1, 15101.	9.3	36
75	Aggregating field-scale knowledge into farm-scale models of African smallholder systems: Summary functions to simulate crop production using APSIM. Agricultural Systems, 2008, 97, 151-166.	6.1	35
76	STRATEGIC PHOSPHORUS APPLICATION IN LEGUME-CEREAL ROTATIONS INCREASES LAND PRODUCTIVITY AND PROFITABILITY IN WESTERN KENYA. Experimental Agriculture, 2010, 46, 35-52.	0.9	34
77	The â€~One cow per poor family' programme: Current and potential fodder availability within smallholder farming systems in southwest Rwanda. Agricultural Systems, 2014, 131, 11-22.	6.1	34
78	Facultative nitrogen fixation by legumes in the central Congo basin is downregulated during late successional stages. Biotropica, 2016, 48, 281-284.	1.6	33
79	Nitrogen and phosphorus uptake by maize as affected by particulate organic matter quality, soil characteristics, and land-use history for soils from the West African moist savanna zone. Biology and Fertility of Soils, 2000, 30, 440-449.	4.3	32
80	Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda. Agricultural Systems, 2020, 183, 102857.	6.1	32
81	Soil litter dynamics and N use in a leucaena (Leucaena leucocephala Lam. (de Witt)) alley cropping system in Southwestern Nigeria. Soil Biology and Biochemistry, 1996, 28, 739-749.	8.8	31
82	Socio-Ecological Niches for Minimum Tillage and Crop-Residue Retention in Continuous Maize Cropping Systems in Smallholder Farms of Central Kenya. Agronomy Journal, 2012, 104, 188-198.	1.8	31
83	Title is missing!. Plant and Soil, 2001, 228, 61-71.	3.7	30
84	Title is missing!. Nutrient Cycling in Agroecosystems, 2002, 62, 139-150.	2.2	30
85	Farmer adoption of plot- and farm-level natural resource management practices: Between rhetoric and reality. Global Food Security, 2019, 20, 101-104.	8.1	30
86	Title is missing!. Agroforestry Systems, 1998, 42, 245-264.	2.0	29
87	Soil Climate and Decomposer Activity in Sub-Saharan Africa Estimated from Standard Weather Station Data: A Simple Climate Index for Soil Carbon Balance Calculations. Ambio, 2007, 36, 379-386.	5.5	29
88	Participatory evaluation of integrated pest and soil fertility management options using ordered categorical data analysis. Agricultural Systems, 2010, 103, 233-244.	6.1	29
89	POOR FARMERS – POOR YIELDS: SOCIO-ECONOMIC, SOIL FERTILITY AND CROP MANAGEMENT INDICATORS AFFECTING CLIMBING BEAN PRODUCTIVITY IN NORTHERN RWANDA. Experimental Agriculture, 2019, 55, 14-34.	0.9	29
90	Organic resource management in sub-Saharan Africa: validation of a residue quality-driven decision support system. Agronomy for Sustainable Development, 2002, 22, 839-846.	0.8	29

#	Article	IF	CITATIONS
91	Title is missing!. Agroforestry Systems, 1998, 42, 213-227.	2.0	28
92	Integrated soil fertility management: from concept to practice in Eastern DR Congo. International Journal of Agricultural Sustainability, 2016, 14, 100-118.	3.5	28
93	Maize production under combined Conservation Agriculture and Integrated Soil Fertility Management in the sub-humid and semi-arid regions of Kenya. Field Crops Research, 2020, 254, 107833.	5.1	28
94	Senna siamea trees recycle Ca from a Ca-rich subsoil and increase the topsoil pH in agroforestry systems in the West African derived savanna zone. Plant and Soil, 2005, 269, 285-296.	3.7	27
95	Balanced nutrient requirements for maize in the Northern Nigerian Savanna: Parameterization and validation of QUEFTS model. Field Crops Research, 2019, 241, 107585.	5.1	27
96	Combining Mineral Fertilizer and Green Manure for Increased, Profitable Cassava Production. Agronomy Journal, 2012, 104, 178-187.	1.8	26
97	Production gradients in smallholder banana (cv. Giant Cavendish) farms in Central Kenya. Scientia Horticulturae, 2011, 127, 475-481.	3.6	25
98	Agronomic gain: Definition, approach, and application. Field Crops Research, 2021, 270, 108193.	5.1	25
99	Assessing and understanding non-responsiveness of maize and soybean to fertilizer applications in African smallholder farms. Agriculture, Ecosystems and Environment, 2021, 305, 107165.	5.3	24
100	Effect of intercropping maize and soybeans onStriga hermonthicaparasitism and yield of maize. Archives of Phytopathology and Plant Protection, 2011, 44, 158-167.	1.3	23
101	Variability of soybean response to rhizobia inoculant, vermicompost, and a legume-specific fertilizer blend in Siaya County of Kenya. Soil and Tillage Research, 2019, 194, 104290.	5.6	21
102	The Phosphate Inhibition Paradigm: Host and Fungal Genotypes Determine Arbuscular Mycorrhizal Fungal Colonization and Responsiveness to Inoculation in Cassava With Increasing Phosphorus Supply. Frontiers in Plant Science, 2021, 12, 693037.	3.6	21
103	The distribution of phosphorus fractions and desorption characteristics of some soils in the moist savanna zone of West Africa. Nutrient Cycling in Agroecosystems, 2004, 69, 127-141.	2.2	19
104	Nutrient imbalance and yield limiting factors of low input East African highland banana (Musa spp.) Tj ETQq0 0	0 rg <u>BT</u> /Ov	erlock 10 Tf 5
105	Spatial and temporal gradients of earthworm casting activity in alley cropping systems. Agroforestry Systems, 1998, 41, 127-137.	2.0	18
106	Resource use and food self-sufficiency at farm scale within two agro-ecological zones of Rwanda. Food Security, 2014, 6, 609-628.	5.3	18
107	Reducing spatial variability of soybean response to rhizobia inoculants in farms of variable soil fertility in Siaya County of western Kenya. Agriculture, Ecosystems and Environment, 2018, 261, 153-160.	5.3	18
108	Long-term application of low C:N residues enhances maize yield and soil nutrient pools across Kenya. Nutrient Cycling in Agroecosystems, 2019, 114, 261-276.	2.2	18

#	Article	IF	CITATIONS
109	Reconciling yield gains in agronomic trials with returns under African smallholder conditions. Scientific Reports, 2020, 10, 14286.	3.3	18
110	Title is missing!. Agroforestry Systems, 1998, 42, 229-244.	2.0	17
111	Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nature Communications, 2022, 13, 330.	12.8	17
112	Title is missing!. Agroforestry Systems, 2002, 54, 1-12.	2.0	16
113	Managing Tephrosia mulch and fertilizer to enhance coffee productivity on smallholder farms in the Eastern African Highlands. European Journal of Agronomy, 2013, 48, 19-29.	4.1	16
114	Title is missing!. Plant and Soil, 2001, 231, 187-199.	3.7	15
115	Potential nutrient supply, nutrient utilization efficiencies, fertilizer recovery rates and maize yield in northern Nigeria. Nutrient Cycling in Agroecosystems, 2008, 80, 161-172.	2.2	15
116	The impact of Desmodium spp. and cutting regimes on the agronomic and economic performance of Desmodium–maize intercropping system in western Kenya. Field Crops Research, 2012, 137, 97-107.	5.1	15
117	Banana leaf pruning to facilitate annual legume intercropping as an intensification strategy in the East African highlands. European Journal of Agronomy, 2019, 110, 125923.	4.1	15
118	"That is my farm―– An integrated co-learning approach for whole-farm sustainable intensification in smallholder farming. Agricultural Systems, 2021, 188, 103041.	6.1	14
119	Understanding nutrient imbalances in maize (Zea mays L.) using the diagnosis and recommendation integrated system (DRIS) approach in the Maize belt of Nigeria. Scientific Reports, 2021, 11, 16018.	3.3	14
120	Mineral N dynamics in bare and cropped Leucaena leucocephala and Dactyladenia barteri alley cropping systems after the addition of 15 N-labelled leaf residues. European Journal of Soil Science, 1998, 49, 417-425.	3.9	13
121	Response of maize (<i>Zea mays</i>) to the application of foliar fertilizers in the Sudan and Guinea savanna zone of Nigeria. Journal of Plant Nutrition and Soil Science, 2015, 178, 374-383.	1.9	11
122	Biophysical potential of crop residues for biochar carbon sequestration, and coâ€benefits, in Uganda. Ecological Applications, 2019, 29, e01984.	3.8	10
123	Impact of arbuscular mycorrhizal fungi and earthworms on soil aggregate stability, glomalin, and performance of pigeonpea, Cajanus cajan. Soil Research, 2019, 57, 53.	1.1	10
124	Title is missing!. Agroforestry Systems, 2001, 53, 21-30.	2.0	8
125	Effects of Plant Age and Rock Phosphate on Quality and Nutrient Release of Legume Residue. Pedosphere, 2009, 19, 78-85.	4.0	8
126	Ecological characteristics and cultivar influence optimal plant density of East African highland bananas (Musa spp., AAA-EA) in low input cropping systems. Scientia Horticulturae, 2013, 150, 299-311.	3.6	8

#	Article	IF	CITATIONS
127	Residual phosphorus effects and nitrogenÂ×Âphosphorus interactions in soybean–maize rotations on a P-deficient Ferralsol. Nutrient Cycling in Agroecosystems, 2014, 98, 187-201.	2.2	8
128	Evaluation of MALDI-TOF mass spectrometry for the competitiveness analysis of selected indigenous cowpea (Vigna unguiculata L. Walp.) Bradyrhizobium strains from Kenya. Applied Microbiology and Biotechnology, 2018, 102, 5265-5278.	3.6	8
129	Targeting Resources Within Diverse, Heterogeneous and Dynamic Farming Systems: Towards a â€~Uniquely African Green Revolution'. , 2011, , 747-758.		8
130	Soil Organic Matter and Soil Fertility. SSSA Special Publication Series, 2015, , 69-89.	0.2	7
131	FROM BEST FIT TECHNOLOGIES TO BEST FIT SCALING: INCORPORATING AND EVALUATING FACTORS AFFECTING THE ADOPTION OF GRAIN LEGUMES IN SUB-SAHARAN AFRICA. Experimental Agriculture, 2019, 55, 226-251.	0.9	7
132	Are farmers using cropping system intensification technologies experiencing poverty reduction in the Great Lakes Region of Africa?. Food and Energy Security, 2020, 9, e205.	4.3	7
133	How nutrient rich are decaying cocoa pod husks? The kinetics of nutrient leaching. Plant and Soil, 2021, 463, 155-170.	3.7	7
134	Assessment of sustainable land use: linking land management practices to sustainable land use indicators. International Journal of Agricultural Sustainability, 2022, 20, 265-288.	3.5	7
135	Within-farm soil fertility gradients affect response of maize to fertiliser application in western Kenya. , 2007, , 121-132.		7
136	Integrated Soil Fertility Management in Africa. Books in Soils, Plants, and the Environment, 2006, , 257-272.	0.1	6
137	Physico-chemical soil attributes under conservation agriculture and integrated soil fertility management. Nutrient Cycling in Agroecosystems, 2021, 120, 145.	2.2	6
138	Quantifying the prevalence of (non)-response to fertilizers in sub-Saharan Africa using on-farm trial data. Nutrient Cycling in Agroecosystems, 2021, 121, 257-269.	2.2	6
139	Long-Term Integrated Soil Fertility Management in South-Western Nigeria: Crop Performance and Impact on the Soil Fertility Status. , 2012, , 175-200.		6
140	Plant age and rock phosphate effects on the organic resource quality of herbaceous legume residues and their N and P release dynamics. Agronomy for Sustainable Development, 2008, 28, 429-437.	5.3	5
141	The response of climbing bean to fertilizer and organic manure in the Northern Province of Rwanda. Experimental Agriculture, 2020, 56, 722-737.	0.9	5
142	Measuring household legume cultivation intensity in sub-Saharan Africa. International Journal of Agricultural Sustainability, 2021, 19, 319-334.	3.5	5
143	Integrated management of Striga gesnerioides in cowpea using resistant varieties, improved crop nutrition and rhizobium inoculants. Plant and Soil, 0, , 1.	3.7	5
144	Unravelling causes of poor crop response to applied N and P fertilizers on African soils. Experimental Agriculture, 2022, 58, .	0.9	5

#	Article	IF	CITATIONS
145	Genetically Different Isolates of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Induce Differential Responses to Stress in Cassava. Frontiers in Plant Science, 2020, 11, 596929.	3.6	4
146	Market access and resource endowment define the soil fertility status of smallholder farming systems of Southâ€Kivu, DR Congo. Soil Use and Management, 2021, 37, 353-366.	4.9	4
147	Nutrient Deficiencies Are Key Constraints to Grain Legume Productivity on "Non-responsive―Soils in Sub-Saharan Africa. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	4
148	Land Access in the Development of Horticultural Crops in East Africa. A Case Study of Passion Fruit in Burundi, Kenya, and Rwanda. Sustainability, 2020, 12, 3041.	3.2	3
149	Maize nutrient yield response and requirement in the maize belt of Nigeria. Environmental Research Letters, 2022, 17, 064025.	5.2	3
150	Influence of plant density on variability of soil fertility and nutrient budgets in low input East African highland banana (Musa spp. AAA-EA) cropping systems. Nutrient Cycling in Agroecosystems, 2013, 95, 187-202.	2.2	2
151	Intensification options of small holders' cassava production in Southâ€west Nigeria. Agronomy Journal, 2020, 112, 5312-5324.	1.8	2
152	Optimising crop productivity in legume-cereal rotations through nitrogen and phosphorus management in western Kenya. , 2007, , 493-502.		2
153	Mineral fertilizer use in land-scarce conditions: Case of Rwanda. Open Agriculture, 2020, 5, 690-702.	1.7	2
154	Indifferent to difference? Understanding the unequal impacts of farming technologies among smallholders. A review. Agronomy for Sustainable Development, 2022, 42, .	5.3	2
155	Interaction Between Resource Quality, Aggregate Turnover, Carbon and Nitrogen Cycling in the Central Highlands of Kenya. , 2011, , 807-816.		1
156	Balanced Nutrient Management System Technologies In The Northern Guinea Savanna Of Nigeria: Validation And Perspective. , 2007, , 669-678.		1