Frank Hochholdinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4863626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From weeds to crops: genetic analysis of root development in cereals. Trends in Plant Science, 2004, 9, 42-48.	4.3	313
2	Towards the molecular basis of heterosis. Trends in Plant Science, 2007, 12, 427-432.	4.3	291
3	An Exocyst Complex Functions in Plant Cell Growth in Arabidopsis and Tobacco. Plant Cell, 2008, 20, 1330-1345.	3.1	280
4	The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant Journal, 2007, 50, 649-659.	2.8	259
5	Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 2021, 7, 481-499.	4.7	247
6	Genetic and genomic dissection of maize root development and architecture. Current Opinion in Plant Biology, 2009, 12, 172-177.	3.5	230
7	Genetic Dissection of Root Formation in Maize (Zea mays) Reveals Root-type Specific Developmental Programmes. Annals of Botany, 2004, 93, 359-368.	1.4	226
8	Conserved and diverse mechanisms in root development. Current Opinion in Plant Biology, 2008, 11, 70-74.	3.5	188
9	The maize (<i>Zea mays</i> L.) <i>roothairless3</i> gene encodes a putative GPIâ€anchored, monocotâ€specific, COBRAâ€like protein that significantly affects grain yield. Plant Journal, 2008, 54, 888-898.	2.8	185
10	The roothairless1 Gene of Maize Encodes a Homolog of sec3, Which Is Involved in Polar Exocytosis. Plant Physiology, 2005, 138, 1637-1643.	2.3	183
11	Isolation, Characterization, and Pericycle-Specific Transcriptome Analyses of the Novel Maize Lateral and Seminal Root Initiation Mutant rum1. Plant Physiology, 2005, 139, 1255-1267.	2.3	179
12	Defining the boundaries: structure and function of LOB domain proteins. Trends in Plant Science, 2011, 16, 47-52.	4.3	173
13	Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant Journal, 1996, 10, 845-857.	2.8	163
14	Complementation contributes to transcriptome complexity in maize (<i>Zea mays</i> L.) hybrids relative to their inbred parents. Genome Research, 2012, 22, 2445-2454.	2.4	154
15	Genetic Control of Root System Development in Maize. Trends in Plant Science, 2018, 23, 79-88.	4.3	148
16	Transcriptomic and Proteomic Analyses of Pericycle Cells of the Maize Primary Root. Plant Physiology, 2007, 145, 575-588.	2.3	144
17	Analyzing Lateral Root Development: How to Move Forward. Plant Cell, 2012, 24, 15-20.	3.1	125
18	LOB Domain Proteins: Beyond Lateral Organ Boundaries. Trends in Plant Science, 2016, 21, 159-167.	4.3	124

#	Article	IF	CITATIONS
19	<i>Roothairless5</i> , which functions in maize (<i><scp>Z</scp>ea mays</i> L.) root hair initiation and elongation encodes a monocotâ€specific <scp>NADPH</scp> oxidase. Plant Journal, 2014, 79, 729-740.	2.8	118
20	Comparison of Maize (<i>Zea mays</i> L.) F1-Hybrid and Parental Inbred Line Primary Root Transcriptomes Suggests Organ-Specific Patterns of Nonadditive Gene Expression and Conserved Expression Trends. Genetics, 2008, 179, 1275-1283.	1.2	111
21	Grasses suppress shoot-borne roots to conserve water during drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8861-8866.	3.3	111
22	<i>Rootless with undetectable meristem 1</i> encodes a monocotâ€specific AUX/IAA protein that controls embryonic seminal and postâ€embryonic lateral root initiation in maize. Plant Journal, 2011, 66, 341-353.	2.8	110
23	Genetic Control of Lateral Root Formation in Cereals. Trends in Plant Science, 2016, 21, 951-961.	4.3	107
24	Manifestation of heterosis during early maize (Zea mays L.) root development. Theoretical and Applied Genetics, 2006, 112, 421-429.	1.8	104
25	Heterosis in plants. Current Biology, 2018, 28, R1089-R1092.	1.8	103
26	Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta, 2014, 240, 667-678.	1.6	95
27	Auxin Immunolocalization Implicates Vesicular Neurotransmitter-Like Mode of Polar Auxin Transport in Root Apices. Plant Signaling and Behavior, 2006, 1, 122-133.	1.2	91
28	The Maize Root System: Morphology, Anatomy, and Genetics. , 2009, , 145-160.		89
29	Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytologist, 2019, 221, 180-194.	3.5	89
30	The <i>Gibberellic Acid Stimulated-Like</i> Gene Family in Maize and Its Role in Lateral Root Development Â. Plant Physiology, 2009, 152, 356-365.	2.3	88
31	Early post-embryonic root formation is specifically affected in the maize mutantlrt1. Plant Journal, 1998, 16, 247-255.	2.8	85
32	Molecular dissection of heterosis manifestation during early maize root development. Theoretical and Applied Genetics, 2010, 120, 383-388.	1.8	84
33	European maize genomes highlight intraspecies variation in repeat and gene content. Nature Genetics, 2020, 52, 950-957.	9.4	84
34	Global expression profiling applied to plant development. Current Opinion in Plant Biology, 2004, 7, 50-56.	3.5	81
35	Nonsyntenic Genes Drive Highly Dynamic Complementation of Gene Expression in Maize Hybrids. Plant Cell, 2014, 26, 3939-3948.	3.1	80
36	Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of fieldâ€grown maize roots. New Phytologist, 2018, 217, 1240-1253.	3.5	80

#	Article	IF	CITATIONS
37	Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. Journal of Experimental Botany, 2016, 67, 1095-1107.	2.4	78
38	Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (<i>Zea mays</i> L.). Journal of Experimental Botany, 2016, 67, 1123-1135.	2.4	76
39	Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shootâ€borne root formation. New Phytologist, 2015, 207, 1123-1133.	3.5	75
40	LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1. Journal of Experimental Botany, 2015, 66, 3855-3863.	2.4	71
41	Transcriptomic complexity in young maize primary roots in response to low water potentials. BMC Genomics, 2014, 15, 741.	1.2	69
42	The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. Journal of Experimental Botany, 2014, 65, 4919-4930.	2.4	69
43	A High-Resolution Tissue-Specific Proteome and Phosphoproteome Atlas of Maize Primary Roots Reveals Functional Gradients along the Root Axes. Plant Physiology, 2015, 168, 233-246.	2.3	64
44	Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutantrum1. Proteomics, 2006, 6, 4300-4308.	1.3	58
45	Analysis of nonadditive protein accumulation in young primary roots of a maize (<i>Zea) Tj ETQq1 1 0.784314 3882-3894.</i>	4 rgBT /Ον 1.3	erlock 10 Tf 57
46	Shared Genetic Control of Root System Architecture between <i>Zea mays</i> and <i>Sorghum bicolor</i> . Plant Physiology, 2020, 182, 977-991.	2.3	57
47	Assembly Patterns of the Rhizosphere Microbiome Along the Longitudinal Root Axis of Maize (Zea mays) Tj ETQq1	1.9.7843	14 rgBT /0√
48	Specification of Cortical Parenchyma and Stele of Maize Primary Roots by Asymmetric Levels of Auxin, Cytokinin, and Cytokinin-Regulated Proteins Â. Plant Physiology, 2009, 152, 4-18.	2.3	56
49	Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.). Proteomics, 2006, 6, 2530-2541.	1.3	55
50	Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation. Plant Physiology, 2015, 169, 690-704.	2.3	55
51	Cooperative Action of SLR1 and SLR2 Is Required for Lateral Root-Specific Cell Elongation in Maize. Plant Physiology, 2001, 125, 1529-1539.	2.3	54
52	Molecular interactions of ROOTLESS CONCERNING CROWN AND SEMINAL ROOTS, a LOB domain protein regulating shoot-borne root initiation in maize (<i>Zea mays</i> L.). Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1542-1551.	1.8	54
53	Genotypic variation for root architecture traits in seedlings of maize (<i>Zea mays</i> L.) inbred lines. Plant Breeding, 2012, 131, 465-478.	1.0	54
54	Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns. Plant Physiology, 2016, 170, 1783-1798.	2.3	53

FRANK HOCHHOLDINGER

#	Article	IF	CITATIONS
55	The Mucilage Proteome of Maize (<i>Zea mays</i> L.) Primary Roots. Journal of Proteome Research, 2010, 9, 2968-2976.	1.8	51
56	Lateral roots affect the proteome of the primary root of maize (Zea mays L.). Plant Molecular Biology, 2004, 56, 397-412.	2.0	50
57	Single-Parent Expression Is a General Mechanism Driving Extensive Complementation of Non-syntenic Genes in Maize Hybrids. Current Biology, 2018, 28, 431-437.e4.	1.8	50
58	Experimental platforms for the investigation of spatiotemporal patterns inÂthe rhizosphere—Laboratory and field scale. Journal of Plant Nutrition and Soil Science, 2021, 184, 35-50.	1.1	49
59	Proteomic dissection of plant development. Proteomics, 2006, 6, 4076-4083.	1.3	48
60	Untapping root system architecture for crop improvement. Journal of Experimental Botany, 2016, 67, 4431-4433.	2.4	48
61	Cytoplasmic regulation of the accumulation of nuclearâ€encoded proteins in the mitochondrial proteome of maize. Plant Journal, 2004, 37, 199-208.	2.8	47
62	The Role of Host Genetic Signatures on Root–Microbe Interactions in the Rhizosphere and Endosphere. Frontiers in Plant Science, 2018, 9, 1896.	1.7	45
63	Release of the benzoxazinoids defense molecules during lateral- and crown root emergence in Zea mays. Journal of Plant Physiology, 2004, 161, 981-985.	1.6	44
64	The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Proteomics, 2005, 5, 4885-4893.	1.3	42
65	Nonadditive Protein Accumulation Patterns in Maize (Zea maysL.) Hybrids during Embryo Development. Journal of Proteome Research, 2010, 9, 6511-6522.	1.8	42
66	Nonsyntenic genes drive tissue-specific dynamics of differential, nonadditive and allelic expression patterns in maize hybrids. Plant Physiology, 2016, 171, pp.00262.2016.	2.3	42
67	Transcriptomic reprogramming of barley seminal roots by combined water deficit and salt stress. BMC Genomics, 2019, 20, 325.	1.2	42
68	Conserved and Unique Features of the Maize (<i>Zea mays</i> L.) Root Hair Proteome. Journal of Proteome Research, 2011, 10, 2525-2537.	1.8	41
69	Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant, Cell and Environment, 2020, 43, 344-357.	2.8	39
70	Stability of Single-Parent Gene Expression Complementation in Maize Hybrids upon Water Deficit Stress. Plant Physiology, 2017, 173, 1247-1257.	2.3	36
71	Ethylenediurea (EDU) mitigates the negative effects of ozone in rice: Insights into its mode of action. Plant, Cell and Environment, 2018, 41, 2882-2898.	2.8	36
72	The Maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID Gene Family: Phylogeny, Synteny, and Unique Root-Type and Tissue-Specific Expression Patterns during Development. PLoS ONE, 2013, 8, e78859.	1.1	35

FRANK HOCHHOLDINGER

#	Article	IF	CITATIONS
73	Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Science, 2014, 224, 9-19.	1.7	34
74	Estimating the importance of maize root hairs in low phosphorus conditions and under drought. Annals of Botany, 2019, 124, 961-968.	1.4	34
75	Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays). Annals of Botany, 2015, 116, 751-762.	1.4	33
76	<i>ENHANCED GRAVITROPISM 2</i> encodes a STERILE ALPHA MOTIF–containing protein that controls root growth angle in barley and wheat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
77	Tissue-specific expression of AUX1 in maize roots. Journal of Plant Physiology, 2000, 157, 315-319.	1.6	31
78	Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC–MS. Journal of Proteomics, 2013, 93, 295-302.	1.2	31
79	Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Scientific Reports, 2016, 6, 34395.	1.6	31
80	Plasticity of Lateral Root Branching in Maize. Frontiers in Plant Science, 2019, 10, 363.	1.7	30
81	Conserved and unique features of the homeologous maize Aux/IAA proteins ROOTLESS WITH UNDETECTABLE MERISTEM 1 and RUM1-like 1. Journal of Experimental Botany, 2016, 67, 1137-1147.	2.4	29
82	Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. European Journal of Cell Biology, 2010, 89, 236-241.	1.6	26
83	Comparative Transcriptome Profiling of Maize Coleoptilar Nodes during Shoot-Borne Root Initiation Â Â. Plant Physiology, 2013, 163, 419-430.	2.3	25
84	An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. Plant Methods, 2016, 12, 25.	1.9	25
85	<i>BonnMu</i> : A Sequence-Indexed Resource of Transposon-Induced Maize Mutations for Functional Genomics Studies. Plant Physiology, 2020, 184, 620-631.	2.3	25
86	Proteomics of Maize Root Development. Frontiers in Plant Science, 2018, 9, 143.	1.7	24
87	Tissue Specific Control of the Maize (<i>Zea mays</i> L.) Embryo, Cortical Parenchyma, and Stele Proteomes by <i>RUM1</i> Which Regulates Seminal and Lateral Root Initiation. Journal of Proteome Research, 2009, 8, 2285-2297.	1.8	21
88	Spatiotemporal Dynamics of Maize (Zea mays L.) Root Growth and Its Potential Consequences for the Assembly of the Rhizosphere Microbiota. Frontiers in Microbiology, 2021, 12, 619499.	1.5	21
89	Genetic Control of Root Organogenesis in Cereals. Methods in Molecular Biology, 2013, 959, 69-81.	0.4	20
90	Comparative analyses of three legume species reveals conserved and unique root extracellular proteins. Proteomics, 2012, 12, 3219-3228.	1.3	19

FRANK HOCHHOLDINGER

#	Article	IF	CITATIONS
91	Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. Journal of Experimental Botany, 2017, 68, 2175-2185.	2.4	19
92	Lateral root development in the maize (Zea mays) lateral rootless1 mutant. Annals of Botany, 2013, 112, 417-428.	1.4	18
93	Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation. European Journal of Cell Biology, 2010, 89, 242-249.	1.6	17
94	Diversity of Stability, Localization, Interaction and Control of Downstream Gene Activity in the Maize Aux/IAA Protein Family. PLoS ONE, 2014, 9, e107346.	1.1	14
95	Transcriptomic diversity in seedling roots of European flint maize in response to cold. BMC Genomics, 2020, 21, 300.	1.2	14
96	Laser Microdissection of Plant Cells. Methods in Molecular Biology, 2014, 1080, 249-258.	0.4	13
97	Non-syntenic genes drive RTCS-dependent regulation of the embryo transcriptome during formation of seminal root primordia in maize (<i>Zea mays</i> L.). Journal of Experimental Botany, 2017, 68, erw422.	2.4	11
98	Cyclin expression is completely suppressed at the site of crown root formation in the nodal region of the maize root mutant rtcs. Journal of Plant Physiology, 1998, 153, 425-429.	1.6	10
99	Designing a microarray experiment to estimate dominance in maize (Zea mays L.). Theoretical and Applied Genetics, 2005, 111, 57-64.	1.8	10
100	Cell Type-Specific Transcriptomics of Lateral Root Formation and Plasticity. Frontiers in Plant Science, 2019, 10, 21.	1.7	10
101	ZmGrp3: identification of a novel marker for root initiation in maize and development of a robust assay to quantify allele-specific contribution to gene expression in hybrids. Theoretical and Applied Genetics, 2006, 113, 1305-1315.	1.8	8
102	Cold response and tolerance in cereal roots. Journal of Experimental Botany, 2021, , .	2.4	7
103	Single-parent expression complementation contributes to phenotypic heterosis in maize hybrids. Plant Physiology, 2022, , .	2.3	6
104	Molecular and Genetic Dissection of Cereal Root System Development. , 0, , 175-191.		4
105	Robust non-syntenic gene expression patterns in diverse maize hybrids during root development. Journal of Experimental Botany, 2020, 71, 865-876.	2.4	3
106	MuWU: Mutant-seq library analysis and annotation. Bioinformatics, 2022, 38, 837-838.	1.8	1
107	Maize Root System and Genetic Analysis of Its Formation. , 2002, , 239-248.		0
108	Transcriptomic Dissection of Maize Root System Development. Compendium of Plant Genomes, 2018, , 247-257.	0.3	0