Lu-Sheng Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4863580/publications.pdf

Version: 2024-02-01

471509 501196 64 955 17 28 citations h-index g-index papers 64 64 64 545 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Flow pattern and water holdup measurements of vertical upward oil–water two-phase flow in small diameter pipes. International Journal of Multiphase Flow, 2012, 41, 91-105.	3.4	93
2	A Four-Sector Conductance Method for Measuring and Characterizing Low-Velocity Oil–Water Two-Phase Flows. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 1690-1697.	4.7	85
3	Liquid holdup measurement with double helix capacitance sensor in horizontal oil–water two-phase flow pipes. Chinese Journal of Chemical Engineering, 2015, 23, 268-275.	3.5	46
4	The development of a conductance method for measuring liquid holdup in horizontal oil–water two-phase flows. Measurement Science and Technology, 2012, 23, 025304.	2.6	43
5	Experimental flow pattern map, slippage and time–frequency representation of oil–water two-phase flow in horizontal small diameter pipes. International Journal of Multiphase Flow, 2015, 76, 168-186.	3.4	43
6	The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe. Measurement Science and Technology, 2016, 27, 045101.	2.6	37
7	The measurement of local flow parameters for gas–liquid two-phase bubbly flows using a dual-sensor probe array. Chemical Engineering Science, 2016, 144, 346-363.	3 . 8	36
8	The experimental signals analysis for bubbly oil-in-water flow using multi-scale weighted-permutation entropy. Physica A: Statistical Mechanics and Its Applications, 2015, 417, 230-244.	2.6	34
9	The ultrasonic measurement of high water volume fraction in dispersed oil-in-water flows. Chemical Engineering Science, 2013, 94, 271-283.	3.8	32
10	Nonlinear multi-scale dynamic stability of oil–gas–water three-phase flow in vertical upward pipe. Chemical Engineering Journal, 2016, 302, 595-608.	12.7	28
11	Measurement of Liquid Film Thickness Using Distributed Conductance Sensor in Multiphase Slug Flow. IEEE Transactions on Industrial Electronics, 2020, 67, 8841-8850.	7.9	28
12	Development of a rotating electric field conductance sensor for measurement of water holdup in vertical oil–gas–water flows. Measurement Science and Technology, 2018, 29, 075301.	2.6	27
13	Cross-correlation analysis of interfacial wave and droplet entrainment in horizontal liquid-liquid two-phase flows. Chemical Engineering Journal, 2017, 320, 416-426.	12.7	26
14	The nonlinear analysis of horizontal oil-water two-phase flow in a small diameter pipe. International Journal of Multiphase Flow, 2017, 92, 39-49.	3.4	21
15	Measurement of Oil–Water Interface Characteristics in Horizontal Pipe Using a Conductance Parallel-Wire Array Probe. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 3232-3243.	4.7	20
16	Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe. Scientific Reports, 2016, 6, 20052.	3.3	18
17	Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow. Applied Geophysics, 2016, 13, 179-193.	0.6	18
18	An investigation of oil–water two-phase flow instability using multivariate multi-scale weighted permutation entropy. Physica A: Statistical Mechanics and Its Applications, 2019, 518, 131-144.	2.6	17

#	Article	IF	CITATIONS
19	Prediction of curved oil–water interface in horizontal pipes using modified model with dynamic contact angle. Chinese Journal of Chemical Engineering, 2020, 28, 698-711.	3.5	17
20	Measurement of Water Holdup in Oil-in-Water Flows Using Three-Channel Conductance Probe With Center Body. IEEE Sensors Journal, 2018, 18, 2845-2852.	4.7	16
21	Detection of transient gas-liquid flow structures in horizontal shale gas well using wire-mesh sensor. Journal of Natural Gas Science and Engineering, 2019, 72, 103013.	4.4	16
22	Measurement of Water Velocity in Gas–Water Two-Phase Flow with the Combination of Electromagnetic Flowmeter and Conductance Sensor. Sensors, 2020, 20, 3122.	3.8	13
23	The Finite Element Analysis for Parallel-wire Capacitance Probe in Small Diameter Two-phase Flow Pipe. Chinese Journal of Chemical Engineering, 2013, 21, 813-819.	3.5	12
24	A novel online technique for water conductivity detection of vertical upward oil–gas–water pipe flow using conductance method. Measurement Science and Technology, 2018, 29, 105302.	2.6	12
25	Complex Admittance Detection of Horizontal Oil-Water Two-Phase Flows Using a Capacitance Sensor. IEEE Sensors Journal, 2019, 19, 7489-7498.	4.7	12
26	Instability of horizontal oil-water flows based on the signal-dependent complex admittance representations. Experimental Thermal and Fluid Science, 2019, 103, 337-346.	2.7	12
27	The Performance Characteristics of Electromagnetic Flowmeter in Vertical Low-Velocity Oil-Water Two-Phase Flow. IEEE Sensors Journal, 2021, 21, 464-475.	4.7	12
28	Measurement of Liquid Film Thickness in Vertical Multiphase Slug and Churn Flows Using Distributed Ultrasonic Method. IEEE Sensors Journal, 2019, 19, 10537-10544.	4.7	11
29	Response Characteristics of Coaxial Capacitance Sensor for Horizontal Segregated and Non-Uniform Oil-Water Two-Phase Flows. IEEE Sensors Journal, 2017, 17, 359-368.	4.7	10
30	Measurement of Oil-Gas-Water Mixture Velocity Using a Conductance Cross-Correlation Flowmeter With Center Body in Small Pipe. IEEE Sensors Journal, 2019, 19, 4471-4479.	4.7	10
31	Ultrasonic method for measuring the gas holdup of gas-liquid bubbly flow in a small-diameter pipe. Korean Journal of Chemical Engineering, 2016, 33, 1170-1180.	2.7	9
32	Characterizing flow instability in oil-gas-water three-phase flow using multi-channel conductance sensor signals. Chemical Engineering Journal, 2020, 386, 121237.	12.7	9
33	Salinity Independent Flow Measurement of Vertical Upward Gas-Liquid Flows in a Small Pipe Using Conductance Method. Sensors, 2020, 20, 5263.	3.8	9
34	Measurement of droplet sizes in bubbly oil-in-water flows using a fluid-sampling device. Measurement: Journal of the International Measurement Confederation, 2017, 102, 296-308.	5.0	8
35	Reconstruction of Taylor Bubbles in Slug Flow Using a Direct-Image Multielectrode Conductance Sensor. IEEE Sensors Journal, 2020, 20, 10643-10652.	4.7	8
36	Capacitive Phase Shift Detection for Measuring Water Holdup in Horizontal Oil–Water Two-Phase Flow. Sensors, 2018, 18, 2234.	3.8	7

#	Article	IF	CITATIONS
37	Development of wire-mesh sensor in small bubble visualization based on differential measurement mode. , 2020, , .		7
38	Gas Volume Fraction Measurement of Oil–Gas–Water Three-Phase Flows in Vertical Pipe by Combining Ultrasonic Sensor and Deep Attention Network. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	4.7	7
39	Measurement of Water Holdup in Vertical Upward Oil–Water Two-Phase Flow Pipes Using a Helical Capacitance Sensor. Sensors, 2022, 22, 690.	3.8	7
40	Methodology for production logging in oil-in-water flows under low flow rate and high water-cut conditions. Applied Geophysics, 2019, 16, 302-313.	0.6	6
41	Prediction of pressure drop for segregated oil-water flows in small diameter pipe using modified two-fluid model. Experimental Thermal and Fluid Science, 2020, 114, 110078.	2.7	6
42	Measurement of Gas Holdup in Oil-Gas-Water Flows Using Combined Conductance Sensors. IEEE Sensors Journal, 2021, 21, 12171-12178.	4.7	6
43	A Distributed Conductance Cross-Correlation Method for Measuring Low-Velocity and High Water-Cut Oil-Water Flows. IEEE Sensors Journal, 2021, 21, 23860-23871.	4.7	6
44	Visualization of Vertical Oil–Water–Gas Flows Using Conductance Compensated Wire-Mesh Sensor. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-16.	4.7	6
45	Detection of Interfacial Structures in Inclined Liquid-Liquid Flows Using Parallel-Wire Array Probe and Planar Laser-Induced Fluorescence Methods. Sensors, 2020, 20, 3159.	3.8	5
46	An investigation of transition processes from transient gas–liquid plug to slug flow in horizontal pipe: Experiment and Cost-based recurrence analysis. Nuclear Engineering and Design, 2021, 379, 111253.	1.7	5
47	Method based on parallelâ€wire conductivity probe for measuring water holdâ€up in nearâ€horizontal oil–water twoâ€phase flow pipes. IET Science, Measurement and Technology, 2020, 14, 676-683.	1.6	5
48	Flow Measurement of Oil-Water Two-Phase Flow at Low Flow Rate Using the Plug-in Conductance Sensor Array. Sensors, 2019, 19, 4649.	3.8	4
49	Local detrended cross-correlation analysis for non-stationary time series. Physica A: Statistical Mechanics and Its Applications, 2019, 513, 222-233.	2.6	4
50	Measurement of Oil–Gas–Water Flows in Vertical Pipes Using Electromagnetic Flowmeter and Dual-Conductance Sensors. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	4.7	4
51	Gas Holdup Measurement of Horizontal Gas-Liquid Two-Phase Flows by Using a Novel Combined Ultrasonic-Conductance Sensor. IEEE Sensors Journal, 2021, 21, 27590-27600.	4.7	4
52	Multi-scale symbolic time reverse analysis of gas–liquid two-phase flow structures. International Journal of Modern Physics C, 2017, 28, 1750007.	1.7	3
53	Topological causality analysis of horizontal gas-liquid flows based on cross map of phase spaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126693.	2.1	3
54	Structure Detection of Horizontal Gas–Liquid Slug Flow Using Ultrasonic Transducer and Conductance Sensor. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	4.7	3

#	Article	IF	CITATIONS
55	Measurement of transient flow structures of horizontal gas-liquid two-phase flows using wire-mesh sensor. , 2019, , .		2
56	A three-phase flow visualization method using wire-mesh sensor based on continuous phase conductance compensation. , $2021, , .$		2
57	Measurement of interfacial characteristics and droplet entrainment in nearly horizontal liquid-liquid flows using PLIF method. , 2022, , .		2
58	Gas-liquid two phase flow pattern evolution characteristics based on detrended fluctuation analysis. Mapan - Journal of Metrology Society of India, 2011, 26, 255-265.	1.5	1
59	Characterizing dynamics of swirling film in gas–liquid cylindrical cyclone separator using multi-scale entropy analysis. International Journal of Modern Physics C, 2019, 30, 2050001.	1.7	1
60	Cost-based recurrence analysis of conductance time series for gas–liquid two-phase flow system. International Journal of Modern Physics C, 0, , 2150161.	1.7	1
61	Parameter Measurement Fusion Algorithm Based on Choquet Integral. , 2021, , .		O
62	Pseudo-slug Detection of Horizontal Gas-Liquid Flow Using Ultrasonic Transducer., 2021,,.		0
63	Quantitative research of the liquid film characteristics in upward vertical gas, oil and water flows. Chinese Journal of Chemical Engineering, 2023, 54, 67-79.	3.5	O
64	Detection of interfacial shear stress and droplet detachment using PLIF&PIV methods in horizontal liquid-liquid flows. , 2022, , .		O