Inmaculada Martin Burriel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A medium-density genetic linkage map of the bovine genome. Mammalian Genome, 1997, 8, 21-28.	1.0	313
2	Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Veterinary Immunology and Immunopathology, 2011, 144, 147-154.	0.5	131
3	Stability of Circulating Exosomal miRNAs in Healthy Subjects. Scientific Reports, 2018, 8, 10306.	1.6	107
4	Prion protein gene polymorphisms in healthy and scrapie-affected Spanish sheep. Journal of General Virology, 2004, 85, 2103-2110.	1.3	84
5	Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Animal Genetics, 1999, 30, 177-182.	0.6	83
6	Genetic Footprints of Iberian Cattle in America 500 Years after the Arrival of Columbus. PLoS ONE, 2012, 7, e49066.	1.1	75
7	On the Breeds of Cattle—Historic and Current Classifications. Diversity, 2011, 3, 660-692.	0.7	73
8	Priming Equine Bone Marrow-Derived Mesenchymal Stem Cells with Proinflammatory Cytokines: Implications in Immunomodulation–Immunogenicity Balance, Cell Viability, and Differentiation Potential. Stem Cells and Development, 2017, 26, 15-24.	1.1	69
9	Marker-assisted conservation of European cattle breeds: an evaluation. Animal Genetics, 2006, 37, 475-481.	0.6	63
10	Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Veterinary Research, 2012, 8, 169.	0.7	63
11	Inflammatory response to the administration of mesenchymal stem cells in an equine experimental model: effect of autologous, and single and repeat doses of pooled allogeneic cells in healthy joints. BMC Veterinary Research, 2016, 12, 65.	0.7	58
12	Effect of inflammatory environment on equine bone marrow derived mesenchymal stem cells immunogenicity and immunomodulatory properties. Veterinary Immunology and Immunopathology, 2016, 171, 57-65.	0.5	53
13	Comparative study of equine bone marrow and adipose tissueâ€derived mesenchymal stromal cells. Equine Veterinary Journal, 2012, 44, 33-42.	0.9	52
14	Genetic characterization of Latinâ€American Creole cattle using microsatellite markers. Animal Genetics, 2012, 43, 2-10.	0.6	52
15	Genetic structure, relationships and admixture with wild relatives in native pig breeds from Iberia and its islands. Genetics Selection Evolution, 2013, 45, 18.	1.2	39
16	The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers. Scientific Reports, 2019, 9, 11486.	1.6	38
17	Genetic diversity, structure, and breed relationships in Iberian cattle1. Journal of Animal Science, 2011, 89, 893-906.	0.2	37
18	Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue. BMC Veterinary Research, 2012, 8, 142.	0.7	36

#	Article	IF	CITATIONS
19	Presence of <i>Clostridium difficile</i> in pig faecal samples and wild animal species associated with pig farms. Journal of Applied Microbiology, 2017, 122, 462-472.	1.4	35
20	Cosmid-derived markers anchoring the bovine genetic map to the physical map. Mammalian Genome, 1997, 8, 29-36.	1.0	34
21	Genetic Diversity and Relationships of Endangered Spanish Cattle Breeds. Journal of Heredity, 2007, 98, 687-691.	1.0	34
22	Prion Protein Gene Variability in Spanish Goats. Inference through Susceptibility to Classical Scrapie Strains and Pathogenic Distribution of Peripheral PrPsc. PLoS ONE, 2013, 8, e61118.	1.1	33
23	Genetic diversity and patterns of population structure in Creole goats from the Americas. Animal Genetics, 2017, 48, 315-329.	0.6	32
24	Preliminary studies on isolates of Clostridium difficile from dogs and exotic pets. BMC Veterinary Research, 2018, 14, 77.	0.7	32
25	Expansion under hypoxic conditions enhances the chondrogenic potential of equine bone marrow-derived mesenchymal stem cells. Veterinary Journal, 2013, 195, 248-251.	0.6	30
26	Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie. BMC Genomics, 2014, 15, 59.	1.2	27
27	Epigenetics modifications and Subclinical Atherosclerosis in Obstructive Sleep Apnea: The EPIOSA study. BMC Pulmonary Medicine, 2014, 14, 114.	0.8	27
28	Comparison of Immunohistochemistry and Two Rapid Tests for Detection of Abnormal Prion Protein in Different Brain Regions of Sheep with Typical Scrapie. Journal of Veterinary Diagnostic Investigation, 2005, 17, 467-469.	0.5	26
29	Correlation between Bax overexpression and prion deposition in medulla oblongata from natural scrapie without evidence of apoptosis. Acta Neuropathologica, 2006, 112, 451-460.	3.9	26
30	Effect of Scrapie on the Stability of Housekeeping Genes. Animal Biotechnology, 2009, 21, 1-13.	0.7	25
31	Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers. Genetics Selection Evolution, 2013, 45, 35.	1.2	24
32	Expression of genes involved in immune response and in vitro immunosuppressive effect of equine MSCs. Veterinary Immunology and Immunopathology, 2015, 165, 107-118.	0.5	24
33	The legacy of Columbus in American horse populations assessed by microsatellite markers. Journal of Animal Breeding and Genetics, 2017, 134, 340-350.	0.8	23
34	Genetic diversity and differentiation of five Cuban cattle breeds using 30 microsatellite loci. Journal of Animal Breeding and Genetics, 2013, 130, 79-86.	0.8	22
35	Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle. BMC Genetics, 2014, 15, 47.	2.7	22
36	Detection and Clinical Evolution of Scrapie in Sheep by 3rd Eyelid Biopsy. Journal of Veterinary Internal Medicine, 2006, 20, 187-193.	0.6	21

#	Article	IF	CITATIONS
37	Dysregulation of autophagy in the central nervous system of sheep naturally infected with classical scrapie. Scientific Reports, 2019, 9, 1911.	1.6	21
38	Increased circulating microRNAs miR-342-3p and miR-21-5p in natural sheep prion disease. Journal of General Virology, 2017, 98, 305-310.	1.3	21
39	<i>PRNP</i> haplotype distribution in Moroccan goats. Animal Genetics, 2009, 40, 565-568.	0.6	19
40	Gene Expression Profiling and Association with Prion-Related Lesions in the Medulla Oblongata of Symptomatic Natural Scrapie Animals. PLoS ONE, 2011, 6, e19909.	1.1	19
41	Structural and functional analysis of the HSP90AA1 gene: distribution of polymorphisms among sheep with different responses to scrapie. Cell Stress and Chaperones, 2008, 13, 19-29.	1.2	17
42	Relative breed contributions to neutral genetic diversity of a comprehensive representation of Iberian native cattle. Animal, 2011, 5, 1323-1334.	1.3	17
43	Inflammation affects the viability and plasticity of equine mesenchymal stem cells: possible implications in intra-articular treatments. Journal of Veterinary Science, 2017, 18, 39.	0.5	17
44	Histopathological and Molecular Changes During Apoptosis Produced by 7H-Dibenzo[c,g]-Carbazole in Mouse Liver. Toxicologic Pathology, 2004, 32, 202-211.	0.9	15
45	Differential expression and protein distribution of Bax in natural scrapie. Brain Research, 2007, 1180, 111-120.	1.1	15
46	Detection and Clinical Evolution of Scrapie in Sheep by 3rd Eyelid Biopsy. Journal of Veterinary Internal Medicine, 2006, 20, 187.	0.6	15
47	Changes in HSP gene and protein expression in natural scrapie with brain damage. Veterinary Research, 2011, 42, 13.	1.1	14
48	An Update on Autophagy in Prion Diseases. Frontiers in Bioengineering and Biotechnology, 2020, 8, 975.	2.0	14
49	The Potential of Mesenchymal Stem Cell in Prion Research. Zoonoses and Public Health, 2015, 62, 165-178.	0.9	13
50	Conservation priorities of Iberoamerican pig breeds and their ancestors based on microsatellite information. Heredity, 2016, 117, 14-24.	1.2	13
51	Distinct spatial activation of intrinsic and extrinsic apoptosis pathways in natural scrapie: association with prion-related lesions. Veterinary Research, 2009, 40, 42.	1.1	13
52	Medulla oblongata transcriptome changes during presymptomatic natural scrapie and their association with prion-related lesions. BMC Genomics, 2012, 13, 399.	1.2	12
53	Impairment of autophagy in scrapie-infected transgenic mice at the clinical stage. Laboratory Investigation, 2020, 100, 52-63.	1.7	12
54	Polymorphisms of the <scp>prnp</scp> gene in Moroccan sheep breeds. Veterinary Record, 2007, 161, 524-525.	0.2	11

#	Article	IF	CITATIONS
55	IL-1 family members as candidate genes modulating scrapie susceptibility in sheep: localization, partial characterization, and expression. Mammalian Genome, 2007, 18, 53-63.	1.0	11
56	Characterization of mesenchymal stem cells in sheep naturally infected with scrapie. Journal of General Virology, 2015, 96, 3715-3726.	1.3	11
57	Isolation and Phylogenetic Characterization of Streptococcus halichoeri from a European Badger (Meles meles) with Pyogranulomatous Pleuropneumonia. Journal of Comparative Pathology, 2015, 152, 269-273.	0.1	10
58	Cerebrospinal Fluid and Plasma Small Extracellular Vesicles and miRNAs as Biomarkers for Prion Diseases. International Journal of Molecular Sciences, 2021, 22, 6822.	1.8	10
59	Consequences of dietary manganese and copper imbalance on neuronal apoptosis in a murine model of scrapie. Neuropathology and Applied Neurobiology, 2010, 36, 300-311.	1.8	9
60	Gene and protein patterns of potential prion-related markers in the central nervous system of clinical and preclinical infected sheep. Veterinary Research, 2013, 44, 14.	1.1	9
61	Resistance to colistin and production of extended-spectrum β-lactamases and/or AmpC enzymes in Salmonella isolates collected from healthy pigs in Northwest Spain in two periods: 2008–2009 and 2018. International Journal of Food Microbiology, 2021, 338, 108967.	2.1	9
62	Antimicrobial resistance among canine enteric Escherichia coli isolates and prevalence of attaching–effacing and extraintestinal pathogenic virulence factors in Spain. Acta Veterinaria Hungarica, 2020, 68, 1-7.	0.2	9
63	New polymorphism and linkage mapping of the bovine lactotransferrin gene. Mammalian Genome, 1997, 8, 704-705.	1.0	8
64	Determining the Relative Susceptibility of Four Prion Protein Genotypes to Atypical Scrapie. Analytical Chemistry, 2018, 90, 1255-1262.	3.2	8
65	PrP polymorphisms in Spanish sheep affected with natural scrapie. Veterinary Record, 2004, 155, 370-372.	0.2	7
66	Structural and functional analysis of the ovine laminin receptor gene (RPSA): Possible involvement of the LRP/LR protein in scrapie response. Mammalian Genome, 2008, 19, 92-105.	1.0	6
67	Antiapoptotic activity maintenance of Brain Derived Neurotrophic Factor and the C fragment of the tetanus toxin genetic fusion protein. Open Life Sciences, 2008, 3, 105-112.	0.6	6
68	Differential gene expression and apoptosis markers in presymptomatic scrapie affected sheep. Veterinary Microbiology, 2012, 159, 23-32.	0.8	6
69	Genetic diversity, structure and individual assignment of <scp>C</scp> asta <scp>N</scp> avarra cattle: a wellâ€differentiated fighting bull population. Journal of Animal Breeding and Genetics, 2014, 131, 11-18.	0.8	6
70	Autophagy impairment in highly prion-affected brain areas of sheep experimentally infected with atypical scrapie. Veterinary Microbiology, 2019, 233, 78-84.	0.8	6
71	BAMBI and CHGA in Prion Diseases: Neuropathological Assessment and Potential Role as Disease Biomarkers. Biomolecules, 2020, 10, 706.	1.8	6
72	Forkhead Box P3 Methylation and Expression in Men with Obstructive Sleep Apnea. International Journal of Molecular Sciences, 2020, 21, 2233.	1.8	6

#	Article	IF	CITATIONS
73	Positional and functional characterisation of apoptosis related genes belonging to the BCL2 family in sheep. Cytogenetic and Genome Research, 2005, 109, 519-526.	0.6	5
74	Caracterización genética de seis proteÃnas lácteas en tres razas bovinas cubanas. Animal Genetic Resources Information, 2006, 39, 15-24.	0.3	5
75	Analysis of microsatellite markers in a Cuban water buffalo breed. Journal of Dairy Research, 2017, 84, 289-292.	0.7	5
76	MicroRNA Alterations in a Tg501 Mouse Model of Prion Disease. Biomolecules, 2020, 10, 908.	1.8	5
77	Effect of Scrapie Prion Infection in Ovine Bone Marrow-Derived Mesenchymal Stem Cells and Ovine Mesenchymal Stem Cell-Derived Neurons. Animals, 2021, 11, 1137.	1.0	5
78	Physical and linkage mapping of the bovine bone morphogenetic protein 1 on the evolutionary break region of BTA 8. Cytogenetic and Genome Research, 1997, 79, 179-183.	0.6	4
79	Early postmortem gene expression and its relationship to composition and quality traits in pig Longissimus dorsi muscle1. Journal of Animal Science, 2012, 90, 3325-3336.	0.2	4
80	Primary Cilia in Chondrogenic Differentiation of Equine Bone Marrow Mesenchymal Stem Cells: Ultrastructural Study. Journal of Equine Veterinary Science, 2016, 47, 47-54.	0.4	4
81	Molecular analysis of three Clostridium difficile strain genomes isolated from pig farm-related samples. Anaerobe, 2017, 48, 224-231.	1.0	4
82	Genetic Diversity and Structure of Iberoamerican Livestock Breeds. , 2020, , 52-68.		4
83	P4059 Origins and genetic structure of Creole cattle inferred from Y-chromosomal variation. Journal of Animal Science, 2016, 94, 108-108.	0.2	3
84	Evidence of p75 Neurotrophin Receptor Involvement in the Central Nervous System Pathogenesis of Classical Scrapie in Sheep and a Transgenic Mouse Model. International Journal of Molecular Sciences, 2021, 22, 2714.	1.8	3
85	Experimental transmission to a calf of an isolate of Spanish classical scrapie. Journal of General Virology, 2017, 98, 2628-2634.	1.3	3
86	Neurogranin and Neurofilament Light Chain as Preclinical Biomarkers in Scrapie. International Journal of Molecular Sciences, 2022, 23, 7182.	1.8	3
87	SINEVA polymorphism and mapping of the bovine pregnancy-associated glycoprotein 1 gene. Mammalian Genome, 1998, 9, 179-180.	1.0	2
88	A polymorphic bovine dinucleotide repeat DXYS4 (IOZARA 1489) at the pseudoâ€autosomal region of the sex chromosomes. Animal Genetics, 1996, 27, 287-287.	0.6	2
89	Genome-Wide Methylation Profiling in the Thalamus of Scrapie Sheep. Frontiers in Veterinary Science, 2022, 9, 824677.	0.9	2
90	A polymorphic bovine dinucleotide repeat D27S29 (IOZARA 975) at chromosome 17q26. Animal Genetics, 1996, 27, 287-287.	0.6	1

#	Article	IF	CITATIONS
91	Producción de carne bovina de calidad diferenciada en el marco de un programa de conservación de la raza Serrana de Teruel. Animal Genetic Resources = Ressources Genetiques Animales = Recursos Geneticos Animales, 2013, 53, 147-155.	0.2	1
92	Valvular Endocarditis due to Enterococcus casseliflavus in a 4-Month-Old Female Foal. Journal of Equine Veterinary Science, 2014, 34, 1352-1356.	0.4	1
93	Conservation of Goat Populations from Southwestern Europe Based on Molecular Diversity Criteria. , 2017, , 509-533.		1
94	Therapeutic Assay with the Non-toxic C-Terminal Fragment of Tetanus Toxin (TTC) in Transgenic Murine Models of Prion Disease. Molecular Neurobiology, 2021, 58, 5312-5326.	1.9	1
95	Biodiversidad caprina iberoamericana. , 0, , .		1
96	Estructura y relaciones genéticas de la raza bovina Serrana de Teruel con razas explotadas en España. Archivos De Zootecnia, 2011, 60, 369-372.	0.2	1
97	Lack of relationship between Visna/maedi infection and scrapie resistance genetic markers. Spanish Journal of Agricultural Research, 2014, 12, 676.	0.3	1
98	Genome-wide methylation profile and gene expression in Obstructive Sleep Apnoea. , 2017, , .		1
99	Incidence and characterization of Clostridium difficile in a secondary care hospital in Spain. Revista Espanola De Enfermedades Digestivas, 2018, 111, 338-344.	0.1	1
100	Assignment of the bovine BCL2-like 2 gene <i>(BCL2L2)</i> to BTA10q15→q21 by in situ hybridization and with somatic cell hybrids. Cytogenetic and Genome Research, 2006, 112, 180A-180A.	0.6	0
101	Assignment of the bovine B-cell CLL/lymphoma 2 gene <i>(BCL2)</i> ¹ to BTA24q27 and the bovine BCL2-like 1 gene <i>(BCL2L1)</i> ² to BTA13q22 by in situ hybridization. Cytogenetic and Genome Research, 2006, 112, 341D-341D.	0.6	0
102	Comparación de la frecuencia alélica de las proteÃnas lácteas en cinco poblaciones bovinas cubanas. Animal Genetic Resources = Ressources Genetiques Animales = Recursos Geneticos Animales, 2012, 51, 131-137.	0.2	0
103	Pathology in Practice. Journal of the American Veterinary Medical Association, 2017, 250, 509-512.	0.2	Ο
104	Pathology in Practice. Journal of the American Veterinary Medical Association, 2019, 255, 669-672.	0.2	0
105	Effect of CPAP on Circulating Exosomal MicroRNAs in Patients with Morbid Obesity and Obstructive Sleep Apnea (OSA). , 2019, , .		0
106	On the origins of American Criollo pigs: A common genetic background with a lasting Iberian signature. PLoS ONE, 2021, 16, e0251879.	1.1	0