
Tirtha Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4863045/publications.pdf Version: 2024-02-01

TIDTHA RANEDIEE

#	Article	IF	CITATIONS
1	Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations. Hydrological Processes, 2018, 32, 39-50.	1.1	54
2	Spatial and temporal pattern of wildfires in California from 2000 to 2019. Scientific Reports, 2021, 11, 8779.	1.6	48
3	Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget. Physics of Fluids, 2013, 25, .	1.6	39
4	Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1699-1711.	1.0	39
5	Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions. Agricultural and Forest Meteorology, 2021, 307, 108509.	1.9	31
6	Flume experiments on wind induced flow in static water bodies in the presence of protruding vegetation. Advances in Water Resources, 2015, 76, 11-28.	1.7	27
7	Connections between the Ozmidov scale and mean velocity profile in stably stratified atmospheric surface layers. Journal of Fluid Mechanics, 2016, 797, .	1.4	25
8	Explaining the convector effect in canopy turbulence by means of large-eddy simulation. Hydrology and Earth System Sciences, 2017, 21, 2987-3000.	1.9	25
9	Effects of canopy midstory management and fuel moisture on wildfire behavior. Scientific Reports, 2020, 10, 17312.	1.6	24
10	Mean Flow Near Edges and Within Cavities Situated Inside Dense Canopies. Boundary-Layer Meteorology, 2013, 149, 19-41.	1.2	21
11	Impacts of Forest Thinning on Wildland Fire Behavior. Forests, 2020, 11, 918.	0.9	19
12	A Spectral Budget Model for the Longitudinal Turbulent Velocity in the Stable Atmospheric Surface Layer. Journals of the Atmospheric Sciences, 2016, 73, 145-166.	0.6	17
13	Effect of Vertical Canopy Architecture on Transpiration, Thermoregulation and Carbon Assimilation. Forests, 2018, 9, 198.	0.9	17
14	Generalized logarithmic scaling for high-order moments of the longitudinal velocity component explained by the random sweeping decorrelation hypothesis. Physics of Fluids, 2016, 28, .	1.6	14
15	Mapping the wildland-urban interface in California using remote sensing data. Scientific Reports, 2022, 12, 5789.	1.6	14
16	Effect of Surface Heterogeneity on the Boundary-Layer Height: A Case Study at a Semi-Arid Forest. Boundary-Layer Meteorology, 2018, 169, 233-250.	1.2	13
17	Turbulent transport of energy across a forest and a semiarid shrubland. Atmospheric Chemistry and Physics, 2018, 18, 10025-10038.	1.9	12
18	Persistence analysis of velocity and temperature fluctuations in convective surface layer turbulence. Physics of Fluids, 2020, 32, .	1.6	12

TIRTHA BANERJEE

#	Article	IF	CITATIONS
19	Visibility network analysis of large-scale intermittency in convective surface layer turbulence. Journal of Fluid Mechanics, 2021, 925, .	1.4	12
20	Effect of Secondary Circulations on the Surface–Atmosphere Exchange of Energy at an Isolated Semi-arid Forest. Boundary-Layer Meteorology, 2018, 169, 209-232.	1.2	11
21	Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES. Agricultural and Forest Meteorology, 2018, 255, 17-30.	1.9	10
22	Connecting the Failure of K Theory inside and above Vegetation Canopies and Ejection–Sweep Cycles by a Large-Eddy Simulation. Journal of Applied Meteorology and Climatology, 2017, 56, 3119-3131.	0.6	9
23	Revisiting the role of intermittent heat transport towards Reynolds stress anisotropy in convective turbulence. Journal of Fluid Mechanics, 2020, 899, .	1.4	8
24	Historical seasonal changes in prescribed burn windows in California. Science of the Total Environment, 2022, 836, 155723.	3.9	7
25	The Effects of Canopy Morphology on Flow Over a Twoâ€Dimensional Isolated Ridge. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033027.	1.2	6
26	Compound Postâ€Fire Flood Hazards Considering Infrastructure Sedimentation. Earth's Future, 2022, 10,	2.4	6
27	Observations of Sweep–Ejection Dynamics for Heat and Momentum Fluxes during Wildland Fires in Forested and Grassland Environments. Journal of Applied Meteorology and Climatology, 2021, 60, 185-199.	0.6	5
28	Coherent structures in wind shear induced wave–turbulence–vegetation interaction in water bodies. Agricultural and Forest Meteorology, 2018, 255, 57-67.	1.9	4
29	Identifying Characteristics of Wildfire Towers and Troughs. Atmosphere, 2020, 11, 796.	1.0	4
30	Persistence behavior of heat and momentum fluxes in convective surface layer turbulence. Physics of Fluids, 2020, 32, 115107.	1.6	4
31	How Vulnerable Are American States to Wildfires? A Livelihood Vulnerability Assessment. Fire, 2021, 4, 54.	1.2	3
32	Active Control of Radiated Sound from Stiffened Plates Using IDE-PFC Actuators. International Journal of Acoustics and Vibrations, 2013, 18, .	0.3	2
33	Investigating the turbulent dynamics of small-scale surface fires. Scientific Reports, 2022, 12, .	1.6	2
34	Can a Simple Dynamical System Describe the Interplay between Drag and Buoyancy in Terrain-Induced Canopy Flows?. Journals of the Atmospheric Sciences, 2018, 75, 775-786.	0.6	1
35	Effect of Changing Source Capillary Radius on Bulk Flow Parameter Scaling Laws for Hypersonically Expanding Arc-Ablated Polycarbonate Plasma for Fusion and Space Applications. Journal of Fusion Energy, 2015, 34, 1234-1245.	0.5	0
36	A scale-wise analysis of intermittent momentum transport in dense canopy flows. Journal of Fluid Mechanics, 2022, 942, .	1.4	0