
Chuan Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4862502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature, 2017, 544, 80-83.	13.7	1,090
2	Atomic-layered Au clusters on \hat{I}_{\pm} -MoC as catalysts for the low-temperature water-gas shift reaction. Science, 2017, 357, 389-393.	6.0	534
3	A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature, 2021, 589, 396-401.	13.7	290
4	Highly Dispersed Copper over β-Mo ₂ C as an Efficient and Stable Catalyst for the Reverse Water Gas Shift (RWGS) Reaction. ACS Catalysis, 2017, 7, 912-918.	5.5	263
5	Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Applied Catalysis B: Environmental, 2013, 132-133, 245-255.	10.8	212
6	Investigation into the Catalytic Roles of Various Oxygen Species over Different Crystal Phases of MnO ₂ for C ₆ H ₆ and HCHO Oxidation. ACS Catalysis, 2020, 10, 6176-6187.	5.5	172
7	Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability. Applied Catalysis B: Environmental, 2017, 217, 421-428.	10.8	161
8	Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane. Journal of Materials Chemistry A, 2015, 3, 16461-16468.	5.2	148
9	FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2014, 154-155, 73-81.	10.8	137
10	Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction. Applied Catalysis B: Environmental, 2008, 81, 141-149.	10.8	136
11	Low-concentration formaldehyde removal from air using a cycled storage–discharge (CSD) plasma catalytic process. Chemical Engineering Science, 2011, 66, 3922-3929.	1.9	133
12	MnxCo3â^'xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde. Catalysis Communications, 2012, 28, 18-22.	1.6	130
13	CO Oxidation Activity at Room Temperature over Au/CeO ₂ Catalysts: Disclosure of Induction Period and Humidity Effect. ACS Catalysis, 2014, 4, 3481-3489.	5.5	125
14	Photocatalytic Formaldehyde Oxidation over Plasmonic Au/TiO ₂ under Visible Light: Moisture Indispensability and Light Enhancement. ACS Catalysis, 2017, 7, 6514-6524.	5.5	121
15	Phase Effect of Ni _{<i>x</i>} P _{<i>y</i>} Hybridized with g-C ₃ N ₄ for Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2017, 9, 30583-30590.	4.0	116
16	A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2. Journal of Molecular Catalysis A, 2013, 378, 82-90.	4.8	108
17	CoMn _x O _y nanosheets with molecular-scale homogeneity: an excellent catalyst for toluene combustion. Catalysis Science and Technology, 2018, 8, 459-471.	2.1	95
18	Catalytic formaldehyde removal by "storage-oxidation―cycling process over supported silver catalysts. Chemical Engineering Journal, 2012, 200-202, 729-737.	6.6	94

#	Article	IF	CITATIONS
19	A comparative study of the catalytic oxidation of HCHO and CO over Mn0.75Co2.25O4 catalyst: The effect of moisture. Applied Catalysis B: Environmental, 2014, 160-161, 542-551.	10.8	85
20	Three-dimensional ordered mesoporous Co–Mn oxide: A highly active catalyst for "storage–oxidation―cycling for the removal of formaldehyde. Catalysis Communications, 2013, 36, 52-57.	1.6	71
21	Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx. Applied Catalysis B: Environmental, 2020, 277, 119215.	10.8	68
22	Pt- and Pd-Promoted CeO ₂ –ZrO ₂ for Passive NOx Adsorber Applications. Industrial & Engineering Chemistry Research, 2017, 56, 111-125.	1.8	67
23	Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH ₃ -SCR of NO _x . Catalysis Science and Technology, 2019, 9, 241-251.	2.1	64
24	Three-dimensional nitrogen-doped porous carbon anchored CeO ₂ quantum dots as an efficient catalyst for formaldehyde oxidation. Journal of Materials Chemistry A, 2018, 6, 7897-7902.	5.2	55
25	Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: Effects of β-Mo2C promoter. Applied Catalysis B: Environmental, 2022, 301, 120779.	10.8	53
26	Nano-sized gold particles dispersed on HZSM-5 and SiO 2 substrates for catalytic oxidation of HCHO. Catalysis Today, 2017, 281, 512-519.	2.2	52
27	Carbon dioxide reforming of methane in kilohertz sparkâ€discharge plasma at atmospheric pressure. AICHE Journal, 2011, 57, 2854-2860.	1.8	48
28	Synergy between \hat{I}^2 -Mo2C Nanorods and Non-thermal Plasma for Selective CO2 Reduction to CO. CheM, 2020, 6, 3312-3328.	5.8	47
29	Catalytic Transfer Hydrogenation of Levulinic Acid to γ-Valerolactone over Ni ₃ P-CePO ₄ Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 7416-7425.	1.8	45
30	Engineering the Local Coordination Environment and Density of FeN ₄ Sites by Mn Cooperation for Electrocatalytic Oxygen Reduction. Small, 2022, 18, e2200911.	5.2	44
31	Highly active sites of low spin FellN4 species: The identification and the ORR performance. Nano Research, 2021, 14, 122-130.	5.8	42
32	Enhancement of low-temperature activity over Cu-exchanged zeolite beta from organotemplate-free synthesis for the selective catalytic reduction of NOx with NH3 in exhaust gas streams. Microporous and Mesoporous Materials, 2014, 200, 304-310.	2.2	41
33	Catalytic role of \hat{I}^2 -Mo2C in DRM catalysts that contain Ni and Mo. Catalysis Today, 2015, 258, 676-683.	2.2	41
34	Progress in hydrogen production over transition metal carbide catalysts: challenges and opportunities. Current Opinion in Chemical Engineering, 2018, 20, 68-77.	3.8	40
35	Improvement of catalytic activity over CuFe modified Al-rich Beta catalyst for the selective catalytic reduction of NO with NH3. Microporous and Mesoporous Materials, 2016, 236, 211-217.	2.2	39
36	Ozone catalytic oxidation of adsorbed benzene over AgMn/HZSM-5 catalysts at room temperature. Catalysis Science and Technology, 2014, 4, 2589-2598.	2.1	35

#	Article	IF	CITATIONS
37	Nanoscale HZSM-5 supported PtAg bimetallic catalysts for simultaneous removal of formaldehyde and benzene. Catalysis Today, 2015, 258, 616-626.	2.2	35
38	Ozone catalytic oxidation of benzene over AgMn/HZSM-5 catalysts at room temperature: Effects of Mn loading and water content. Chinese Journal of Catalysis, 2014, 35, 1465-1474.	6.9	34
39	Atmospheric Cold Plasmas for Synthesizing Nanocrystalline Anatase TiO ₂ using Dielectric Barrier Discharges. Plasma Processes and Polymers, 2007, 4, 574-582.	1.6	33
40	Hybrid catalysts with enhanced C3H6 resistance for NH3-SCR of NOx. Applied Catalysis B: Environmental, 2019, 242, 161-170.	10.8	33
41	Gold stabilized on various oxide supports catalyzing formaldehyde oxidation at room temperature. Chinese Journal of Catalysis, 2016, 37, 1729-1737.	6.9	31
42	Fe-doped Beta zeolite from organotemplate-free synthesis for NH ₃ -SCR of NO _x . Catalysis Science and Technology, 2016, 6, 6581-6592.	2.1	29
43	Plasma Catalytic Oxidation of Stored Benzene in a Cycled Storage-Discharge (CSD) Process: Catalysts, Reactors and Operation Conditions. Plasma Chemistry and Plasma Processing, 2011, 31, 799-810.	1.1	26
44	Catalytic Materials for Low Concentration VOCs Removal through "Storageâ€Regeneration―Cycling. ChemCatChem, 2019, 11, 3646-3661.	1.8	23
45	A process for a high yield of aromatics from the oxygen-free conversion of methane: combining plasma with Ni/HZSM-5 catalysts. Green Chemistry, 2007, 9, 647.	4.6	21
46	In situ DRIFTS study during C2H4-SCR of NO over Co-ZSM-5. Journal of Molecular Catalysis A, 2009, 312, 31-39.	4.8	19
47	Positive effects of K+ in hybrid CoMn-K and Pd/Ba/Al2O3 catalysts for NOx storage and reduction. Applied Catalysis B: Environmental, 2019, 249, 333-345.	10.8	19
48	Redox Properties of Cobalt Nitrides for NO Dissociation and Reduction. Catalysis Letters, 2009, 130, 63-71.	1.4	17
49	Phase transformation of iron oxide to carbide and Fe ₃ C as an active center for the RWGS reaction. New Journal of Chemistry, 2021, 45, 22444-22449.	1.4	16
50	Effect of O2/CH4 ratio on the optimal specific-energy-input (SEI) for oxidative reforming of biogas in a plasma-shade reactor. Journal of Energy Chemistry, 2013, 22, 681-684.	7.1	15
51	In situ synthesis of Au–Pd bimetallic nanoparticles on amine-functionalized SiO ₂ for the aqueous-phase hydrodechlorination of chlorobenzene. RSC Advances, 2014, 4, 48254-48259.	1.7	15
52	Kinetic investigation of phenol hydrodeoxygenation over unsupported nickel phosphides. Catalysis Today, 2021, 371, 179-188.	2.2	14
53	Coke-resistant (PtÂ+ÂNi)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene. Chemical Engineering Science, 2022, 252, 117529.	1.9	14
54	Pulsed Streamer Discharge Plasma over Ni/HZSM-5 Catalysts for Methane Conversion to Aromatics at Atmospheric Pressure. Plasma Processes and Polymers, 2007, 4, 15-18.	1.6	13

#	Article	IF	CITATIONS
55	Low-temperature NO x Selective Reduction by Hydrocarbons on H-Mordenite Catalysts in Dielectric Barrier Discharge Plasma. Plasma Chemistry and Plasma Processing, 2009, 29, 43-53.	1.1	13
56	Uniformity, Structure, and Photocatalytic Activity of TiO ₂ Films Deposited by Atmosphericâ€Pressure Linear Cold Plasma. Chemical Vapor Deposition, 2012, 18, 309-314.	1.4	13
57	An energy-efficient catalytic process for the tandem removal of formaldehyde and benzene by metal/HZSM-5 catalysts. Catalysis Science and Technology, 2015, 5, 4968-4972.	2.1	13
58	Low-temperature H ₂ -plasma-assisted NO _x storage and reduction over a combined Pt/Ba/Al and LaMnFe catalyst. Catalysis Science and Technology, 2017, 7, 145-158.	2.1	13
59	Heterogeneous Catalytic Transfer Partial-Hydrogenation with Formic Acid as Hydrogen Source Over the Schiff-Base Modified Gold Nano-Catalyst. Catalysis Letters, 2017, 147, 517-524.	1.4	12
60	α-MoC _{1â^'x} nanorods as an efficient hydrogen evolution reaction electrocatalyst. New Journal of Chemistry, 2021, 45, 10396-10401.	1.4	12
61	Cobalt oxide with flake-like morphology as efficient passive NOx adsorber. Catalysis Communications, 2021, 149, 106203.	1.6	11
62	The synthesis of pure and uniform nanosized TS-1 crystals with a high titanium content and a high space–time yield. Inorganic Chemistry Frontiers, 2021, 8, 5260-5269.	3.0	11
63	Constructing single-crystalline hierarchical plate-like ZSM-5 zeolites with short <i>b</i> -axis length for catalyzing MTO reactions. Inorganic Chemistry Frontiers, 2022, 9, 1456-1466.	3.0	11
64	A highly dispersed Ni3P/HZSM-5 catalyst for hydrodeoxygenation of phenolic compounds to cycloalkanes. Journal of Catalysis, 2022, 410, 294-306.	3.1	11
65	Development of a Catalytic Cycle in Molybdenum Carbide Catalyzed NO/CO Reaction. Catalysis Letters, 2009, 130, 239-245.	1.4	10
66	"Storage-oxidation―cycling process for indoor benzene removal at room temperature. Catalysis Today, 2017, 297, 193-200.	2.2	10
67	New insights into the size and support effects of Î ³ -Al2O3 supported Au catalysts for HCHO oxidation at room temperature. Catalysis Science and Technology, 2020, 10, 4571-4579.	2.1	10
68	Hydrogenative Ring-Rearrangement of Furfural to Cyclopentanone over Pd/UiO-66-NO2 with Tunable Missing-Linker Defects. Molecules, 2021, 26, 5736.	1.7	10
69	Tailored activity of Cu–Fe bimetallic Beta zeolite with promising C ₃ H ₆ resistance for NH ₃ -SCR. Catalysis Science and Technology, 2021, 11, 646-655.	2.1	9
70	Plate-like MFI crystal growth achieved by guanidine compounds. Inorganic Chemistry Frontiers, 2022, 9, 2097-2103.	3.0	9
71	Design of highly stable metal/ZSM-5 catalysts for the shape-selective alkylation of toluene with methanol to <i>para</i> -xylene. Inorganic Chemistry Frontiers, 2022, 9, 3348-3358.	3.0	9
72	Effects of the Pore Structure and Acid–Base Property of X Zeolites on Side-Chain Alkylation of Toluene with Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 14381-14396.	1.8	8

#	Article	IF	CITATIONS
73	Rapid solvent-free synthesis of nano-sized ZSM-5 with a low Si/Al ratio at 90 °C. Inorganic Chemistry Frontiers, 2022, 9, 1992-2000.	3.0	8
74	A Carbide Catalyst Effective for the Dry Reforming of Methane at Atmospheric Pressure. ACS Symposium Series, 2010, , 181-196.	0.5	7
75	Enhanced Low-Temperature Activity of Ag-Promoted Co-ZSM-5 for the CH4-SCR of NO. Catalysis Letters, 2011, 141, 207-212.	1.4	7
76	High yield of aromatics from CH4in a plasma-followed-by-catalyst (PFC) reactor. AICHE Journal, 2006, 52, 3321-3324.	1.8	6
77	Rareâ€earth Yttrium Exchanged Cu‧SZâ€39 Zeolite with Superior Hydrothermal Stability and SO ₂ ‶olerance in NH ₃ ‧CR of NO <i>x</i> . ChemCatChem, 2022, 14, .	1.8	6
78	The reactions and composition of the surface intermediate species in the selective catalytic reduction of NO x with ethylene over Co-ZSM-5. Research on Chemical Intermediates, 2007, 33, 549-566.	1.3	5
79	Ozone catalytic oxidation for ammonia removal from simulated air at room temperature. Catalysis Science and Technology, 2015, 5, 2227-2237.	2.1	5
80	The Role of Active Sites of CoH-ZSM-5 Catalysts for the C2H4-SCR of NO. Catalysis Letters, 2010, 135, 182-189.	1.4	4
81	The Nature of Active Sites of Co/Al2O3 for the Selective Catalytic Reduction of NO with C2H4. Catalysis Letters, 2009, 133, 134-141.	1.4	3
82	Regeneration of deactivated Au/TiO <inf>2</inf> nanocatalysts during co oxidation by using in-situ O <inf>2</inf> and N <inf>2</inf> /O <inf>2</inf> plasma _2012		0

O<inf>2</inf> and N<inf>2</inf>/O<inf>2</inf> plasma., 2012, . 82