Mark S Geier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4862283/publications.pdf Version: 2024-02-01

218592 345118 2,540 36 26 36 h-index citations g-index papers 36 36 36 3005 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Variable Microbiota Development in the Chicken Gastrointestinal Tract. PLoS ONE, 2013, 8, e84290.	1.1	231
2	Intestinal microbiota associated with differential feed conversion efficiency in chickens. Applied Microbiology and Biotechnology, 2012, 96, 1361-1369.	1.7	229
3	Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria. Frontiers in Microbiology, 2016, 7, 187.	1.5	195
4	Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiology, 2015, 15, 51.	1.3	165
5	Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 2013, 164, 85-92.	0.8	155
6	Inflammatory bowel disease: Current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. International Journal of Food Microbiology, 2007, 115, 1-11.	2.1	141
7	Probiotics, prebiotics and synbiotics: A role in chemoprevention for colorectal cancer?. Cancer Biology and Therapy, 2006, 5, 1265-1269.	1.5	130
8	Prebiotics Modulate Immune Responses in the Gut-Associated Lymphoid Tissue of Chickens. Journal of Nutrition, 2009, 139, 1404-1409.	1.3	109
9	Lactobacillus fermentum BR11, a potential new probiotic, alleviates symptoms of colitis induced by dextran sulfate sodium (DSS) in rats. International Journal of Food Microbiology, 2007, 114, 267-274.	2.1	108
10	Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens. Applied Microbiology and Biotechnology, 2017, 101, 4547-4559.	1.7	85
11	<i>Lactobacillus fermentum</i> BR11 and Fructo-Oligosaccharide Partially Reduce Jejunal Inflammation in a Model of Intestinal Mucositis in Rats. Nutrition and Cancer, 2008, 60, 757-767.	0.9	75
12	Evidence Supporting the use of Probiotics for the Prevention and Treatment of Chemotherapy-Induced Intestinal Mucositis. Critical Reviews in Food Science and Nutrition, 2011, 51, 239-247.	5.4	67
13	Probiotic factors partially improve parameters of 5-fluorouracil-induced intestinal mucositis in rats. Cancer Biology and Therapy, 2011, 11, 671-677.	1.5	66
14	A Multifactorial Analysis of the Extent to WhichEimeriaand Fishmeal Predispose Broiler Chickens to Necrotic Enteritis. Avian Diseases, 2015, 59, 38-45.	0.4	66
15	Functional Characterization of the Chicken Fatty Acid Elongases. Journal of Nutrition, 2013, 143, 12-16.	1.3	59
16	Pre-treatment with insulin-like growth factor-I partially ameliorates 5-fluorouracil-induced intestinal mucositis in rats. Growth Hormone and IGF Research, 2005, 15, 72-82.	0.5	57
17	Orally administered emu oil decreases acute inflammation and alters selected small intestinal parameters in a rat model of mucositis. British Journal of Nutrition, 2010, 104, 513-519.	1.2	55
18	Probiotics and their derivatives as treatments for inflammatory bowel disease. Inflammatory Bowel Diseases, 2009, 15, 1906-1914.	0.9	54

MARK S GEIER

#	Article	IF	CITATIONS
19	Development and resolution of experimental colitis in mice with targeted deletion of dipeptidyl peptidase IV. Journal of Cellular Physiology, 2005, 204, 687-692.	2.0	45
20	Probiotic Effects on 5-Fluorouracil-Induced Mucositis Assessed by the Sucrose Breath Test in Rats. Digestive Diseases and Sciences, 2007, 52, 612-619.	1.1	44
21	Inhibiting dipeptidyl peptidase activity partially ameliorates colitis in mice. Frontiers in Bioscience - Landmark, 2008, Volume, 6850.	3.0	43
22	Prebiotic and Synbiotic Fructooligosaccharide Administration Fails to Reduce the Severity of Experimental Colitis in Rats. Diseases of the Colon and Rectum, 2007, 50, 1061-1069.	0.7	41
23	Probiotic factors partially prevent changes to caspases 3 and 7 activation and transepithelial electrical resistance in a model of 5-fluorouracil-induced epithelial cell damage. Supportive Care in Cancer, 2012, 20, 3205-3210.	1.0	41
24	Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. Journal of Cellular Physiology, 2011, 226, 3219-3224.	2.0	38
25	Lyprinolâ"¢ only partially improves indicators of small intestinal integrity in a rat model of 5-fluorouracil-induced mucositis. Cancer Biology and Therapy, 2008, 7, 295-302.	1.5	35
26	Lactobacillus rhamnosus GG Exacerbates Intestinal Ulceration in a Model of Indomethacin-Induced Enteropathy. Digestive Diseases and Sciences, 2007, 52, 1247-1252.	1.1	31
27	Small-Intestinal Manifestations of Dextran Sulfate Sodium Consumption in Rats and Assessment of the Effects of Lactobacillus fermentum BR11. Digestive Diseases and Sciences, 2009, 54, 1222-1228.	1.1	26
28	Sorghum and wheat differentially affect caecal microbiota and associated performance characteristics of meat chickens. PeerJ, 2017, 5, e3071.	0.9	23
29	Prebiotics: A Potential Treatment Strategy for the Chemotherapy-damaged Gut?. Critical Reviews in Food Science and Nutrition, 2016, 56, 946-956.	5.4	22
30	Prebiotics Fructo-, Galacto-, and Mannan-Oligosaccharide Do Not Protect against 5-Fluorouracil–Induced Intestinal Mucositis in Rats. Journal of Nutrition, 2019, 149, 2164-2173.	1.3	21
31	Identification of differential duodenal gene expression levels and microbiota abundance correlated with differences in energy utilisation in chickens. Animal Production Science, 2013, 53, 1269.	0.6	18
32	Non-invasive detection of a palifermin-mediated adaptive response following chemotherapy-induced damage to the distal small intestine of rats. Cancer Biology and Therapy, 2011, 12, 399-406.	1.5	16
33	Effects of a Lactobacillus reuteri BR11 Mutant Deficient in the Cystine-Transport System in a Rat Model of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2012, 57, 713-719.	1.1	16
34	Effect of dietary ALA on growth rate, feed conversion ratio, mortality rate and breast meat omega-3 LCPUFA content in broiler chickens. Animal Production Science, 2016, 56, 815.	0.6	14
35	Dipeptidyl Peptidases and Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, 2006, 575, 155-162.	0.8	11
36	Can emu oil ameliorate inflammatory disorders affecting the gastrointestinal system?. Australian Journal of Experimental Agriculture, 2008, 48, 1276.	1.0	8