
Qing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4862270/publications.pdf Version: 2024-02-01

OINCLU

#	Article	IF	CITATIONS
1	Pathogen detection strategy based on CRISPR. Microchemical Journal, 2022, 174, 107036.	4.5	12
2	Bacterial coloration immunofluorescence strip for ultrasensitive rapid detection of bacterial antibodies and targeted antibody-secreting hybridomas. Journal of Immunological Methods, 2022, 501, 113208.	1.4	3
3	Construction and immunological evaluation of live vector vaccine based on attenuated Listeria monocytogenes vector against Vibrio parahaemolyticus infection. Aquaculture, 2022, 560, 738560.	3.5	2
4	Rapid detection of <scp> <i>Escherichia coli</i> O157</scp> : <scp>H7</scp> in milk, bread, and jelly by lac dye <scp>colorationâ€based</scp> bidirectional lateral flow immunoassay strip. Journal of Food Safety, 2021, 41, .	2.3	12
5	A rapid detection of Escherichia coli O157 : H7 by competition visual antigen macroarray. Journal of Food Safety, 2021, 41, .	2.3	6
6	Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Applied Microbiology and Biotechnology, 2021, 105, 1315-1331.	3.6	19
7	Raman spectroscopy combined with machine learning for rapid detection of food-borne pathogens at the single-cell level. Talanta, 2021, 226, 122195.	5.5	64
8	Identification and evaluation of a panel of strong constitutive promoters in Listeria monocytogenes for improving the expression of foreign antigens. Applied Microbiology and Biotechnology, 2021, 105, 5135-5145.	3.6	1
9	Development and comparison of immunochromatographic strips with four nanomaterial labels: Colloidal gold, new colloidal gold, multi-branched gold nanoflowers and Luminol-reduced Au nanoparticles for visual detection of Vibrio parahaemolyticus in seafood. Aquaculture, 2021, 539, 736563.	3.5	14
10	A novel antigen immunochromatography fluorometric strip for rapid detection and application of pathogenic bacterial high-quality antibody. Journal of Immunological Methods, 2021, 494, 113014.	1.4	2
11	Systematic identification of a panel of strong promoter regions from Listeria monocytogenes for fine-tuning gene expression. Microbial Cell Factories, 2021, 20, 132.	4.0	1
12	Reverse vaccinology approach for the identifications of potential vaccine candidates against Salmonella. International Journal of Medical Microbiology, 2021, 311, 151508.	3.6	18
13	Impact of biocontrol microbes on soil microbial diversity in ginger (<i>Zingiber) Tj ETQq1 1 0.784314 rgBT /Ove</i>	rlock 10 T 3.4	f 50 262 Td (c
14	Colloidal gold immunochromatographic test strips for broad-spectrum detection of Salmonella. Food Control, 2021, 126, 108052.	5.5	32
15	Evaluation of an attenuated Listeria monocytogenes as a vaccine vector to control Helicobacter pylori infection. Immunology Letters, 2021, 238, 68-74.	2.5	7
16	An ultrasensitive and contamination-free on-site nucleic acid detection platform for Listeria monocytogenes based on the CRISPR-Cas12a system combined with recombinase polymerase amplification. LWT - Food Science and Technology, 2021, 152, 112166.	5.2	22
17	An Aggregation-Induced Emission Material Labeling Antigen-Based Lateral Flow Immunoassay Strip for Rapid Detection of Escherichia coli O157:H7. SLAS Technology, 2021, 26, 377-383.	1.9	9
18	A Novel Design of Multi-epitope Vaccine Against Helicobacter pylori by Immunoinformatics Approach. International Journal of Peptide Research and Therapeutics, 2021, 27, 1027-1042.	1.9	8

Qing Liu

#	Article	IF	CITATIONS
19	Antibiotic Resistance Patterns of <i>Staphylococcus aureus</i> Isolates from Retail Foods in Mainland China: A Meta-Analysis. Foodborne Pathogens and Disease, 2020, 17, 296-307.	1.8	14
20	Hydrangea-like mesoporous WO3 nanoflowers with crystalline framework for 3-hydroxy-2-butanone sensing. Analytical and Bioanalytical Chemistry, 2020, 412, 8371-8378.	3.7	12
21	A review: Progress in the development of fish Vibrio spp. vaccines. Immunology Letters, 2020, 226, 46-54.	2.5	36
22	orf6 and orf10 in Prophage phiv142-3 Enhance the Iron-Acquisition Ability and Resistance of Avian Pathogenic Escherichia coli Strain DE142 to Serum. Frontiers in Veterinary Science, 2020, 7, 588708.	2.2	5
23	A colorimetric immunoassay for determination of Escherichia coli O157:H7 based on oxidase-like activity of cobalt-based zeolitic imidazolate framework. Mikrochimica Acta, 2020, 187, 506.	5.0	8
24	SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157:H7. Analytical and Bioanalytical Chemistry, 2020, 412, 7881-7890.	3.7	30
25	Immunological evaluation of virulence-deficient Listeria monocytogenes strains in C57BL/6 mice. Microbial Pathogenesis, 2020, 148, 104448.	2.9	1
26	Cableâ€Like Core–Shell Mesoporous SnO ₂ Nanofibers by Singleâ€Nozzle Electrospinning Phase Separation for Formaldehyde Sensing. Chemistry - A European Journal, 2020, 26, 9365-9370.	3.3	6
27	Attenuated Listeria monocytogenes as a Vaccine Vector for the Delivery of OMPW, the Outer Membrane Protein of Aeromonas hydrophila. Frontiers in Microbiology, 2020, 11, 70.	3.5	9
28	Peanut-like mesoporous tungsten oxides via a synergistic templating strategy for efficient isoprene detection. Journal of Materials Science, 2020, 55, 7645-7651.	3.7	3
29	Probabilistic model for estimating Listeria monocytogenes concentration in cooked meat products from presence/absence data. Food Research International, 2020, 131, 109040.	6.2	2
30	Modeling the interactions among <i>Salmonella</i> enteritidis, <i>Pseudomonas aeruginosa</i> , and <i>Lactobacillus plantarum</i> . Journal of Food Safety, 2020, 40, e12811.	2.3	4
31	Attenuated Listeria monocytogenes protecting zebrafish (Danio rerio) against Vibrio species challenge. Microbial Pathogenesis, 2019, 132, 38-44.	2.9	14
32	Modeling the Effects of the Preculture Temperature on the Lag Phase of Listeria monocytogenes at 25°C. Journal of Food Protection, 2019, 82, 2100-2107.	1.7	4
33	Quantitative risk assessment of <i>Listeria monocytogenes</i> in bulk cooked meat from production to consumption in China: a Bayesian approach. Journal of the Science of Food and Agriculture, 2019, 99, 2931-2938.	3.5	4
34	Reactive oxygen species inhibit biofilm formation of Listeria monocytogenes. Microbial Pathogenesis, 2019, 127, 183-189.	2.9	13
35	Development of a Bacterial Macroarray for the Rapid Screening of Targeted Antibody-Secreted Hybridomas. SLAS Discovery, 2019, 24, 190-198.	2.7	1
36	Development of colloidal goldâ€based immunochromatographic strip test using two monoclonal antibodies for detection of <i>Vibrio parahaemolyticus</i> . Journal of Food Safety, 2018, 38, e12468.	2.3	6

Qing Liu

#	Article	IF	CITATIONS
37	Evaluation of Caco-2†cells response to Listeria monocytogenes virulence factors by RT-PCR. Microbial Pathogenesis, 2018, 120, 79-84.	2.9	19
38	Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunology Letters, 2018, 197, 70-77.	2.5	47
39	Enhancing the immunofluorescent sensitivity for detection of Acidovorax citrulli using fluorescein isothiocyanate labeled antigen and antibody. Analytical and Bioanalytical Chemistry, 2018, 410, 71-77.	3.7	16
40	Fluorescein Isothiocyanate Labeling Antigen-Based Immunoassay Strip for Rapid Detection of <i>Acidovorax citrulli</i> . Plant Disease, 2018, 102, 527-532.	1.4	10
41	Comparison between gold nanoparticles and FITC as the labelling in lateral flow immunoassays for rapid detection of <i>Ralstonia solanacearum</i> . Food and Agricultural Immunology, 2018, 29, 1074-1085.	1.4	6
42	Reactive oxygen species inhibits <i>Listeria monocytogenes</i> invasion into HepG2 epithelial cells. Food Science and Nutrition, 2018, 6, 1501-1507.	3.4	3
43	Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis. Analytical and Bioanalytical Chemistry, 2018, 410, 7145-7152.	3.7	49
44	Gut Microbiota and Relevant Metabolites Analysis in Alcohol Dependent Mice. Frontiers in Microbiology, 2018, 9, 1874.	3.5	46
45	Exploration of the bacterial invasion capacity of Listeria monocytogenes in ZF4 cells. Microbial Pathogenesis, 2018, 124, 238-243.	2.9	5
46	A potential aquaculture vaccine vector: Evaluation of a double-gene attenuated Listeria monocytogenes in zebrafish (Danio rerio). Aquaculture, 2017, 479, 311-320.	3.5	16
47	Modeling Growth of <i>Pseudomonas Aeruginosa</i> Single Cells with Temperature Shifts. Journal of Food Safety, 2016, 36, 442-449.	2.3	4
48	Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli. Analytical and Bioanalytical Chemistry, 2016, 408, 6071-6078.	3.7	25
49	Simple sensitive rapid detection of Escherichia coli O157:H7 in food samples by label-free immunofluorescence strip sensor. Talanta, 2016, 156-157, 42-47.	5.5	44
50	Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157:H7 in food samples. Biosensors and Bioelectronics, 2016, 85, 734-739.	10.1	79
51	Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157:H7 in bread, milk and jelly samples. Food Control, 2016, 59, 345-351.	5.5	97
52	A new spot quality control for protein macroarray based on immunological detection. Talanta, 2015, 138, 176-182.	5.5	4
53	Simultaneous quantification of Escherichia coli O157:H7 and Shigella boydii using a visual-antibody-macroarray. Analyst, The, 2015, 140, 6595-6601.	3.5	3
54	Research progress of natural antioxidants in foods for the treatment of diseases. Food Science and Human Wellness, 2014, 3, 110-116.	4.9	100

C	2in	$c \mid$	111
<u>ب</u>	2114	υL	.iu

#	Article	IF	CITATIONS
55	A simple, rapid and visual antibody array for the simultaneous detection of multiple plant pathogens. Analytical Methods, 2013, 5, 2413.	2.7	3