
Mirella Meregalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4861938/publications.pdf Version: 2024-02-01

MIDELLA MEDECALLI

#	Article	IF	CITATIONS
1	Effective high-throughput isolation of enriched platelets and circulating pro-angiogenic cells to accelerate skin-wound healing. Cellular and Molecular Life Sciences, 2022, 79, 259.	5.4	3
2	Metformin rescues muscle function in BAG3 myofibrillar myopathy models. Autophagy, 2021, 17, 2494-2510.	9.1	22
3	Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Molecular Medicine, 2020, 12, e11019.	6.9	18
4	Interstitial Cell Remodeling Promotes Aberrant Adipogenesis in Dystrophic Muscles. Cell Reports, 2020, 31, 107597.	6.4	64
5	Preliminary Evidences of Safety and Efficacy of Flavonoids- and Omega 3-Based Compound for Muscular Dystrophies Treatment: A Randomized Double-Blind Placebo Controlled Pilot Clinical Trial. Frontiers in Neurology, 2019, 10, 755.	2.4	19
6	Supplementation with a selective amino acid formula ameliorates muscular dystrophy in mdx mice. Scientific Reports, 2018, 8, 14659.	3.3	22
7	Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. Journal of Neuroscience Research, 2018, 96, 1576-1585.	2.9	12
8	Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 21. Human Molecular Genetics, 2017, 26, 3682-3698.	2.9	20
9	Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction. Stem Cells Translational Medicine, 2016, 5, 451-463.	3.3	22
10	Exome sequencing identifies variants in two genes encoding the LIM-proteins NRAP and FHL1 in an Italian patient with BAG3 myofibrillar myopathy. Journal of Muscle Research and Cell Motility, 2016, 37, 101-115.	2.0	23
11	Adaptive Immune Response Impairs the Efficacy of Autologous Transplantation of Engineered Stem Cells in Dystrophic Dogs. Molecular Therapy, 2016, 24, 1949-1964.	8.2	24
12	Duchenne muscular dystrophy caused by a frame-shift mutation in the acceptor splice site of intron 26. BMC Medical Genetics, 2016, 17, 55.	2.1	5
13	Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development (Cambridge), 2016, 143, 658-669.	2.5	22
14	Improvement of Endurance of DMD Animal Model Using Natural Polyphenols. BioMed Research International, 2015, 2015, 1-17.	1.9	11
15	Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies. BioMed Research International, 2014, 2014, 1-16.	1.9	8
16	Advancements in stem cells treatment of skeletal muscle wasting. Frontiers in Physiology, 2014, 5, 48.	2.8	18
17	Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases. Stem Cells International, 2014, 2014, 1-11.	2.5	82
18	Stem Cells in Dystrophic Animal Models: From Preclinical to Clinical Studies. Pancreatic Islet Biology, 2014. , 3-30.	0.3	0

MIRELLA MEREGALLI

#	Article	IF	CITATIONS
19	Perspectives of stem cell therapy in <scp>D</scp> uchenne muscular dystrophy. FEBS Journal, 2013, 280, 4251-4262.	4.7	30
20	The involvement of microRNAs in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 2013, 7, 265.	3.7	209
21	Fullâ€length dysferlin expression driven by engineered human dystrophic blood derived <scp>CD</scp> 133+ stem cells. FEBS Journal, 2013, 280, 6045-6060.	4.7	12
22	CD133+ Cells for the Treatment of Degenerative Diseases: Update and Perspectives. Advances in Experimental Medicine and Biology, 2013, 777, 229-243.	1.6	4
23	The Role of Stem Cells in Muscular Dystrophies. Current Gene Therapy, 2012, 12, 192-205.	2.0	13
24	Expression of CD20 reveals a new store-operated calcium entry modulator in skeletal muscle. International Journal of Biochemistry and Cell Biology, 2012, 44, 2095-2105.	2.8	9
25	Hmgb3 Is Regulated by MicroRNA-206 during Muscle Regeneration. PLoS ONE, 2012, 7, e43464.	2.5	35
26	Novel insight into stem cell trafficking in dystrophic muscles. International Journal of Nanomedicine, 2012, 7, 3059.	6.7	14
27	Absence of T and B lymphocytes modulates dystrophic features in dysferlin deficient animal model. Experimental Cell Research, 2012, 318, 1160-1174.	2.6	26
28	Duchenne Muscular Dystrophy: Isolation of CD133-Expressing Myogenic Progenitors from Blood and Muscle of DMD Patients. , 2012, , 277-285.		0
29	<i>In Vivo</i> Tracking of Stem Cell by Nanotechnologies: Future Prospects for Mouse to Human Translation. Tissue Engineering - Part B: Reviews, 2011, 17, 1-11.	4.8	21
30	Ex vivo expansion of human circulating myogenic progenitors on cluster-assembled nanostructured TiO2. Biomaterials, 2010, 31, 5385-5396.	11.4	21
31	Stem Cell Therapies to Treat Muscular Dystrophy. BioDrugs, 2010, 24, 237-247.	4.6	40
32	CD133 ⁺ cells isolated from various sources and their role in future clinical perspectives. Expert Opinion on Biological Therapy, 2010, 10, 1521-1528.	3.1	40
33	Combining Stem Cells and Exon Skipping Strategy to Treat Muscular Dystrophy. , 2010, , 249-256.		0
34	Cell based therapy for duchenne muscular dystrophy. Journal of Cellular Physiology, 2009, 221, 526-534.	4.1	55
35	Expression of Parathyroid-Specific Genes in Vascular Endothelial Progenitors of Normal and Tumoral Parathyroid Glands. American Journal of Pathology, 2009, 175, 1200-1207.	3.8	7
36	Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opinion on Biological Therapy, 2008, 8, 1051-1061.	3.1	13

MIRELLA MEREGALLI

#	Article	IF	CITATIONS
37	Correlation of Circulating CD133+ Progenitor Subclasses with a Mild Phenotype in Duchenne Muscular Dystrophy Patients. PLoS ONE, 2008, 3, e2218.	2.5	9
38	Restoration of Human Dystrophin Following Transplantation of Exon-Skipping-Engineered DMD Patient Stem Cells into Dystrophic Mice. Cell Stem Cell, 2007, 1, 646-657.	11.1	206
39	VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation. Blood, 2006, 108, 2857-66.	1.4	25
40	Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. Journal of Clinical Investigation, 2004, 114, 182-195.	8.2	315
41	Stem Cell Therapy for Neuromuscular Diseases. , 0, , .		2