Antonella Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4861781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(l-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces:Â Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption. Langmuir, 2001, 17, 489-498.	3.5	490
2	Exploiting XPS for the identification of sulfides and polysulfides. RSC Advances, 2015, 5, 75953-75963.	3.6	336
3	Structural Chemistry of Self-Assembled Monolayers of Octadecylphosphoric Acid on Tantalum Oxide Surfaces. Langmuir, 2000, 16, 3257-3271.	3.5	256
4	Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology, 2017, 12, 642-647.	31.5	216
5	The corrosion resistance of electroless deposited nano-crystalline Ni–P alloys. Electrochimica Acta, 2008, 53, 3364-3370.	5.2	117
6	Microslips to "Avalanches―in Confined, Molecular Layers of Ionic Liquids. Journal of Physical Chemistry Letters, 2014, 5, 179-184.	4.6	107
7	Electroless deposited Ni–P alloys: corrosion resistance mechanism. Journal of Applied Electrochemistry, 2008, 38, 1053-1060.	2.9	104
8	Electrochemistry and surface chemistry of stainless steels in alkaline media simulating concrete pore solutions. Electrochimica Acta, 2008, 53, 8078-8086.	5.2	102
9	Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Analytical and Bioanalytical Chemistry, 2012, 403, 1415-1432.	3.7	102
10	Nanostructured spinel cobalt ferrites: Fe and Co chemical state, cation distribution and size effects by X-ray photoelectron spectroscopy. RSC Advances, 2019, 9, 19171-19179.	3.6	100
11	Enargite oxidation: A review. Earth-Science Reviews, 2008, 86, 62-88.	9.1	98
12	Ionic Liquids Confined in Hydrophilic Nanocontacts: Structure and Lubricity in the Presence of Water. Journal of Physical Chemistry C, 2014, 118, 6491-6503.	3.1	98
13	XPS and XAES analysis of copper, arsenic and sulfur chemical state in enargites. Surface and Interface Analysis, 2006, 38, 922-930.	1.8	97
14	XPS study of the influence of temperature on ZnDTP tribofilm composition. Tribology Letters, 2007, 25, 185-196.	2.6	97
15	Chemical analyses of Bronze Age glasses from Frattesina di Rovigo, Northern Italy. Journal of Archaeological Science, 2004, 31, 1175-1184.	2.4	96
16	Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor – process, wettability improvement and ageing effects. Applied Surface Science, 2005, 252, 1581-1595.	6.1	93
17	Permanent Patternâ€Resolved Adjustment of the Surface Potential of Grapheneâ€Like Carbon through Chemical Functionalization. Angewandte Chemie - International Edition, 2009, 48, 224-227.	13.8	92
18	Combined in situ (ATR FT-IR) and ex situ (XPS) Study of the ZnDTP-Iron Surface Interaction. Tribology Letters, 2003, 15, 181-191.	2.6	87

#	Article	IF	CITATIONS
19	Synthesis of Poly(methacrylic acid) Brushes via Surface-Initiated Atom Transfer Radical Polymerization of Sodium Methacrylate and Their Use as Substrates for the Mineralization of Calcium Carbonate. Macromolecules, 2007, 40, 168-177.	4.8	81
20	Chemical Analysis of Spray Pyrolysis Gadolinia-Doped Ceria Electrolyte Thin Films for Solid Oxide Fuel Cells. Chemistry of Materials, 2007, 19, 1134-1142.	6.7	74
21	Squareâ€Micrometerâ€Sized, Freeâ€Standing Organometallic Sheets and Their Squareâ€Centimeterâ€Sized Multilayers on Solid Substrates. Macromolecular Rapid Communications, 2013, 34, 1670-1680.	3.9	71
22	Title is missing!. Tribology Letters, 2003, 15, 199-209.	2.6	70
23	Particle size and metal-support interaction effects in pumice supported palladium catalysts. Applied Catalysis A: General, 1995, 125, 113-128.	4.3	67
24	XPS, AES and ToF-SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels. Surface and Interface Analysis, 2000, 29, 460-467.	1.8	67
25	Influence of Major Anions on As(V) Adsorption by Synthetic 2-line Ferrihydrite. Kinetic Investigation and XPS Study of the Competitive Effect of Bicarbonate. Water, Air, and Soil Pollution, 2010, 205, 25-41.	2.4	67
26	Tribochemistry of Bulk Zinc Metaphosphate Glasses. Tribology Letters, 2010, 39, 121-134.	2.6	66
27	Electronic properties of TiO ₂ -based materials characterized by high Ti ³⁺ self-doping and low recombination rate of electron–hole pairs. RSC Advances, 2017, 7, 2373-2381.	3.6	66
28	Growth of Tribological Films:Â In Situ Characterization Based on Attenuated Total Reflection Infrared Spectroscopy. Langmuir, 2002, 18, 6606-6613.	3.5	62
29	Irreversible structural change of a dry ionic liquid under nanoconfinement. Physical Chemistry Chemical Physics, 2015, 17, 13613-13624.	2.8	62
30	An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nature Nanotechnology, 2021, 16, 918-925.	31.5	61
31	Chemical Reactivity of Triphenyl Phosphorothionate (TPPT) with Iron: An ATR/FT-IR and XPS Investigation. Journal of Physical Chemistry C, 2011, 115, 1339-1354.	3.1	57
32	Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques. Analytical and Bioanalytical Chemistry, 2011, 401, 2237-2248.	3.7	57
33	Pressure Dependence of ZnDTP Tribochemical Film Formation: A Combinatorial Approach. Tribology Letters, 2007, 28, 209-222.	2.6	55
34	XPS analysis of passive films on the amorphous alloy Fe70Cr10P13C7: Effect of the applied potential. Surface and Interface Analysis, 1992, 18, 499-504.	1.8	53
35	Nondestructive in-depth composition profile of oxy-hydroxide nanolayers on iron surfaces from ARXPS measurement. Surface and Interface Analysis, 2006, 38, 964-974.	1.8	51
36	Surface reactivity of tributyl thiophosphate: effects of temperature and mechanical stress. Tribology Letters, 2006, 23, 197-208.	2.6	51

#	Article	IF	CITATIONS
37	Spatial Tuning of the Metal Work Function by Means of Alkanethiol and Fluorinated Alkanethiol Gradients. Journal of Physical Chemistry C, 2009, 113, 5620-5628.	3.1	51
38	Effect of the environmental humidity on the bulk, interfacial and nanoconfined properties of an ionic liquid. Physical Chemistry Chemical Physics, 2016, 18, 22719-22730.	2.8	51
39	Accelerated Ionic Motion in Amorphous Memristor Oxides for Nonvolatile Memories and Neuromorphic Computing. Advanced Functional Materials, 2019, 29, 1804782.	14.9	51
40	Combined use of X-ray photoelectron and Mössbauer spectroscopic techniques in the analytical characterization of iron oxidation state in amphibole asbestos. Analytical and Bioanalytical Chemistry, 2010, 396, 2889-2898.	3.7	50
41	Mechanisms of galena dissolution in oxygen-saturated solutions: Evaluation of pH effect on apparent activation energies and mineral-water interface. Geochimica Et Cosmochimica Acta, 2005, 69, 2321-2331.	3.9	48
42	Layering of ionic liquids on rough surfaces. Nanoscale, 2016, 8, 4094-4106.	5.6	48
43	XPS study of pumice-supported palladium and platinum catalysts. Surface and Interface Analysis, 1992, 19, 543-547.	1.8	47
44	Surface chemical characterization of PM10 samples by XPS. Applied Surface Science, 2014, 307, 120-128.	6.1	46
45	Aqueous Lubrication of SiC and Si3N4 Ceramics Aided by a Brush-like Copolymer Additive, Poly(l-lysine)-graft-poly(ethylene glycol). Tribology Letters, 2009, 34, 201-210.	2.6	45
46	Quantitative X-ray photoelectron spectroscopy study of enargite (Cu3AsS4) surface. Surface and Interface Analysis, 2001, 31, 465-470.	1.8	43
47	Nanosized surface films on brass alloys by XPS and XAES. RSC Advances, 2016, 6, 31277-31289.	3.6	43
48	Stainless steel reinforcing bars – reason for their high pitting corrosion resistance. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 111-119.	1.5	42
49	Nickel-free manganese bearing stainless steel in alkaline media—Electrochemistry and surface chemistry. Electrochimica Acta, 2011, 56, 4489-4497.	5.2	41
50	Surface analytical studies of surface-additive interactions, by means of in situ and combinatorial approaches. Wear, 2004, 256, 578-584.	3.1	40
51	Effect of phosphorus concentration on the electronic structure of nanocrystalline electrodeposited Ni–P alloys: an XPS and XAES investigation. Surface and Interface Analysis, 2008, 40, 919-926.	1.8	40
52	The structure of pumice: An XPS and27Al MAS NMR study. Surface and Interface Analysis, 1992, 18, 532-538.	1.8	39
53	XPS analysis on the influence of water on the evolution of zinc dialkyldithiophosphate–derived reaction layer in lubricated rolling contacts. Surface and Interface Analysis, 2012, 44, 1219-1224.	1.8	38
54	Determination of Arsenic Speciation in Complex Environmental Samples by the Combined Use of TEM and XPS. Mikrochimica Acta, 2005, 151, 189-201.	5.0	37

#	Article	IF	CITATIONS
55	Adsorption of ionic liquids onto silver studied by XPS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 78-85.	4.7	35
56	Fe (II) segregation at a specific crystallographic site of fibrous erionite: A first step toward the understanding ofÂthe mechanisms inducing its carcinogenicity. Microporous and Mesoporous Materials, 2015, 211, 49-63.	4.4	34
57	Rapid prototyped porous nickel–titanium scaffolds as bone substitutes. Journal of Tissue Engineering, 2014, 5, 204173141454067.	5.5	33
58	Influence of Environmental Humidity on the Wear and Friction of a Silica/Silicon Tribopair Lubricated with a Hydrophilic Ionic Liquid. ACS Applied Materials & Interfaces, 2016, 8, 2961-2973.	8.0	31
59	Unraveling the Charge State of Oxygen Vacancies in ZrO _{2–<i>x</i>} on the Basis of Synergistic Computational and Experimental Evidence. Journal of Physical Chemistry C, 2019, 123, 11581-11590.	3.1	31
60	Reactivity of Triphenyl Phosphorothionate in Lubricant Oil Solution. Tribology Letters, 2009, 35, 31-43.	2.6	30
61	Electroless Plating of Ultrathin Films and Mirrors of Platinum Nanoparticles onto Polymers, Metals, and Ceramics. ACS Applied Materials & Interfaces, 2010, 2, 639-643.	8.0	30
62	Influence of metallic and oxidized iron/steel on the reactivity of triphenyl phosphorothionate in oil solution. Tribology International, 2011, 44, 670-683.	5.9	30
63	Effect of Chain-Length and Countersurface on the Tribochemistry of Bulk Zinc Polyphosphate Glasses. Tribology Letters, 2012, 48, 393-406.	2.6	30
64	Environmental Influence on the Surface Chemistry of Ionic-Liquid-Mediated Lubrication in a Silica/Silicon Tribopair. Journal of Physical Chemistry C, 2014, 118, 29389-29400.	3.1	30
65	XPS investigation of passive films on amorphous Feî—,Cr alloys. Electrochimica Acta, 1992, 37, 2269-2276.	5.2	29
66	Tribochemistry of Triphenyl Phosphorothionate (TPPT) by In Situ Attenuated Total Reflection (ATR/FT-IR) Tribometry. Journal of Physical Chemistry C, 2012, 116, 5614-5627.	3.1	29
67	Reactivity of alkylated phosphorothionates with steel: a tribological and surfaceâ€analytical study. Lubrication Science, 2008, 20, 79-102.	2.1	27
68	A tartrate-based alloy bath for brass-plated steel wire production. Journal of Applied Electrochemistry, 1992, 22, 64-72.	2.9	26
69	XPS and LAXS study of 1,3-thiazolidine-2-thione and its complexes with Co(II) and Zn(II). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 11-20.	3.9	26
70	Surface Coating from Phosphonate Ionic Liquid Electrolyte for the Enhancement of the Tribological Performance of Magnesium Alloy. ACS Applied Materials & Interfaces, 2015, 7, 10337-10347.	8.0	26
71	Load and Velocity Dependence of Friction Mediated by Dynamics of Interfacial Contacts. Physical Review Letters, 2019, 123, 116102.	7.8	26
72	From Chemical to Structural Order of Electrodeposited Ni22P Alloy:Â An XPS and EDXD Study. Chemistry of Materials, 2004, 16, 4216-4225.	6.7	25

#	Article	IF	CITATIONS
73	Modeling Mechanochemical Reaction Mechanisms. ACS Applied Materials & Interfaces, 2017, 9, 26531-26538.	8.0	25
74	Photocatalytic hydrogen evolution by co-catalyst-free TiO ₂ /C bulk heterostructures synthesized under mild conditions. RSC Advances, 2020, 10, 12519-12534.	3.6	25
75	Effect of sodium on the electronic properties of Pd/silica-alumina catalysts. Applied Catalysis A: General, 1996, 147, 81-94.	4.3	24
76	Nondestructive Surface Depth Profiles from Angle-Resolved X-ray Photoelectron Spectroscopy Data Using the Maximum Entropy Method. I. A New Protocol. Journal of Physical Chemistry C, 2009, 113, 21328-21337.	3.1	24
77	Surface alteration mechanism and topochemistry of iron in tremolite asbestos: A step toward understanding the potential hazard of amphibole asbestos. Chemical Geology, 2015, 405, 28-38.	3.3	24
78	An XPS study into sulphur speciation in blue and green ultramarine. Journal of Cultural Heritage, 2018, 29, 30-35.	3.3	24
79	Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: A combined ICP-OES, XPS and TEM investigation. Geochimica Et Cosmochimica Acta, 2014, 127, 221-232.	3.9	23
80	Lubrication of Si-Based Tribopairs with a Hydrophobic Ionic Liquid: The Multiscale Influence of Water. Journal of Physical Chemistry C, 2018, 122, 7331-7343.	3.1	23
81	Impact of substrate material and annealing conditions on the microstructure and chemistry of yttria-stabilized-zirconia thin films. Journal of Power Sources, 2011, 196, 7372-7382.	7.8	22
82	Understanding Complex Tribofilms by Means of H ₃ BO ₃ –B ₂ O ₃ Model Glasses. Langmuir, 2018, 34, 2219-2234.	3.5	22
83	Intercomparison of algorithms for background correction in XPS. Surface and Interface Analysis, 1995, 23, 484-494.	1.8	21
84	Surface chemistry and surface reactivity of fibrous amphiboles that are not regulated as asbestos. Analytical and Bioanalytical Chemistry, 2012, 404, 821-833.	3.7	21
85	In Situ Attenuated Total Reflection (ATR/FT-IR) Tribometry: A Powerful Tool for Investigating Tribochemistry at the Lubricant–Substrate Interface. Tribology Letters, 2012, 45, 207-218.	2.6	21
86	Physicochemical characterization of metal hexacyanometallate–TiO ₂ composite materials. RSC Advances, 2015, 5, 35435-35447.	3.6	21
87	A non-destructive in-situ approach to monitor corrosion inside historical brass wind instruments. Microchemical Journal, 2016, 124, 757-764.	4.5	21
88	Ageing of Passive Films on Stainless Steels in Sulfate Solutions - XPS Analysis. Materials Science Forum, 1995, 185-188, 337-346.	0.3	19
89	Synthesis and characterization of a cobalt(III) complex with 1-(d-3-mercapto-2-methylpropionyl)-l-proline. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 1875-1886.	3.9	19
90	Functionalized Titanium Oxide Surfaces with Phosphated Carboxymethyl Cellulose: Characterization and Bonelike Cell Behavior. Biomacromolecules, 2007, 8, 3965-3972.	5.4	19

#	ARTICLE	IF	CITATIONS
91	Synthesis of Compounds Presenting Three and Four Anthracene Units as Potential Connectors To Mediate Infinite Lateral Growth at the Air/Water Interface. Chemistry - A European Journal, 2008, 14, 10797-10807.	3.3	19
92	A contribution to the surface characterization of alkali metal sulfates. Journal of Electron Spectroscopy and Related Phenomena, 2014, 193, 6-15.	1.7	19
93	Calcium carbonate as sorbent for lead removal from wastewaters. Chemosphere, 2022, 296, 133897.	8.2	19
94	Chemical effect on the XPS spectra of the valence band and on O KLL and Pd MNN Auger spectra in pumice-supported catalysts. Surface and Interface Analysis, 1992, 18, 619-622.	1.8	18
95	Degradation of plasticized PVC for biomedical disposable device under soft x-ray irradiation. Surface and Interface Analysis, 2003, 35, 294-300.	1.8	18
96	Increased conversion and selectivity of 4-nitrostyrene hydrogenation to 4-aminostyrene on Pt nanoparticles supported on titanium-tungsten mixed oxides. Applied Catalysis A: General, 2016, 519, 130-138.	4.3	18
97	Probing the outermost layer of thin gold films by XPS and density functional theory. Applied Surface Science, 2020, 507, 145084.	6.1	18
98	XPS analytical characterization of amorphous alloys: Fe70Cr10P13C7. Surface and Interface Analysis, 1990, 15, 668-674.	1.8	17
99	Radiation-induced migration of additives in PVC-based biomedical disposable devices Part 2. Surface analysis by XPS. Surface and Interface Analysis, 2003, 35, 673-681.	1.8	17
100	The surface of enargite after exposure to acidic ferric solutions: an XPS/XAES study. Surface and Interface Analysis, 2007, 39, 908-915.	1.8	17
101	Orthogonal, Three-Component, Alkanethiol-Based Surface-Chemical Gradients on Gold. Langmuir, 2010, 26, 8392-8399.	3.5	17
102	Fabrication and Microscopic and Spectroscopic Characterization of Planar, Bimetallic, Micro- and Nanopatterned Surfaces. Langmuir, 2017, 33, 5657-5665.	3.5	17
103	An XPS investigation on glucose oxidase and Ni/Al hydrotalcite interaction. Surface and Interface Analysis, 2011, 43, 816-822.	1.8	16
104	Characterisation of Roman and Byzantine glasses from the surroundings of Thugga (Tunisia): Raw materials and colours. Microchemical Journal, 2016, 129, 5-15.	4.5	16
105	A new amorphous trinuclear complex of Pt(II) with 1,3-thiazolidine-2-thione: [Pt3(ttz)8]Cl6. Inorganica Chimica Acta, 1996, 248, 203-208.	2.4	15
106	A Combinatorial Approach to Elucidating Tribochemical Mechanisms. Tribology Letters, 2003, 15, 193-198.	2.6	15
107	Electrochemical and XPS surface analytical studies on the reactivity of enargite. European Journal of Mineralogy, 2007, 19, 353-361.	1.3	15
108	An XPS analytical approach for elucidating the microbially mediated enargite oxidative dissolution. Analytical and Bioanalytical Chemistry, 2009, 393, 1931-1941.	3.7	15

#	Article	IF	CITATIONS
109	Tailoring SU-8 Surfaces: Covalent Attachment of Polymers by Means of Nitrene Insertion. Langmuir, 2014, 30, 10107-10111.	3.5	14
110	Influence of the Nb/P ratio of acidic Nb P Si oxides on surface and catalytic properties. Applied Catalysis A: General, 2019, 579, 9-17.	4.3	14
111	Surface analytical and electrochemical study on the role of adsorbed chloride ions in corrosion of stainless steels. Materials and Corrosion - Werkstoffe Und Korrosion, 2001, 52, 175-180.	1.5	13
112	Radiation-induced migration of additives in PVC-based biomedical disposable devices. Part 1. Surface morphology by AFM and SEM/XEDS. Surface and Interface Analysis, 2003, 35, 395-402.	1.8	13
113	Quantitative Surface Analysis of Urban Airborne Particles by X-Ray Photoelectron Spectroscopy. Annali Di Chimica, 2004, 94, 123-133.	0.6	13
114	Short-time plasma surface modification of polymer powders in a down flowing tube reactor. Surface and Coatings Technology, 2005, 200, 525-528.	4.8	13
115	Iron within the erionite cavity and its potential role in inducing its toxicity: Evidence of Fe (III) segregation as extra-framework cation. Microporous and Mesoporous Materials, 2017, 237, 168-179.	4.4	13
116	The Bright Xâ€Ray Stimulated Luminescence of HfO ₂ Nanocrystals Activated by Ti Ions. Advanced Optical Materials, 2020, 8, 1901348.	7.3	13
117	Defects in the Amorphous–Crystalline Evolution of Gel-Derived TiO ₂ . Journal of Physical Chemistry C, 2020, 124, 23773-23783.	3.1	13
118	A combined ISS and XPS investigation of passive film formation on Fe53Ni. Surface and Interface Analysis, 1992, 18, 269-276.	1.8	12
119	IR, NMR, XPS study of 1-(d-3-mercapto-2-methylpropionyl)-l-proline and its zinc complexes. Spectrochimica Acta Part A: Molecular Spectroscopy, 1992, 48, 911-919.	0.1	12
120	X-ray photoelectron spectra of Pd(II) and Pt(II) complexes with 1,3-thiazolidine-2-thione. A quantum mechanics study on the free ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 1073-1083.	3.9	12
121	Adsorption and Tribochemical Factors Affecting the Lubrication of Silicon-Based Materials by (Fluorinated) Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 7259-7275.	3.1	12
122	Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron. Applied Surface Science, 2017, 396, 1251-1263.	6.1	12
123	Ionic Liquids at Interfaces and Their Tribological Behavior. , 2018, , 172-194.		12
124	X-ray photoelectron spectra of dinitrogen chelating ligands with some transition metals. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1779-1785.	0.1	11
125	Role of the interface oxide film/alloy composition and stability of stainless steels. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 1188-1193.	1.5	11
126	Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM. Journal of the American Society for Mass Spectrometry, 2015, 26, 1311-1319.	2.8	11

#	Article	IF	CITATIONS
127	Stainless steels: Passive film composition, pitting potentials, and critical chloride content in concrete. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 797-807.	1.5	11
128	Amorphous Complexes MM (EDTA) (H2O)4 · 2H2O . LAXS and XPS Investigation of the Local Structure. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1988, 43, 591-596.	1.5	10
129	Model Pumices Supported Metal Catalysts. Journal of Catalysis, 1997, 171, 169-176.	6.2	10
130	Arsenic removal from surface waters by hydrotalcite-like sulphate minerals: field evidences from an old mine in Sardinia, Italy. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2011, 188, 49-63.	0.3	10
131	Selective protein trapping within hybrid nanowells. Nanoscale, 2016, 8, 16511-16519.	5.6	10
132	Nanostructure of Surface Films on Ni18P Alloy in Sulfate Solutions by the Maximum Entropy Method. ACS Omega, 2017, 2, 7790-7802.	3.5	10
133	Introduction to lateral resolution and analysis area measurements in XPS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	10
134	The surface of iron and Fe10Cr alloys in alkaline media. , 2007, , 44-61.		9
135	Influence of Water on Tribolayer Growth When Lubricating Steel with a Fluorinated Phosphonium Dicyanamide Ionic Liquid. Lubricants, 2019, 7, 27.	2.9	9
136	Composition and origin of PM2.5 in Mediterranean Countryside. Environmental Pollution, 2019, 246, 294-302.	7.5	9
137	Enargite by XPS. Surface Science Spectra, 2002, 9, 266-274.	1.3	8
138	Substituent Effect on the Reactivity of Alkylated Triphenyl Phosphorothionates in Oil Solution in the Presence of Iron Particles. Tribology Letters, 2010, 40, 375-394.	2.6	8
139	Surface and bulk modifications of amphibole asbestos in mimicked gamble's solution at acidic PH. Scientific Reports, 2021, 11, 14249.	3.3	8
140	Natural Pumice by XPS. Surface Science Spectra, 1994, 3, 112-120.	1.3	7
141	Elucidating the resistance to failure under tribological tests of various boron-based films by XPS and ToF-SIMS. Applied Surface Science, 2017, 425, 948-964.	6.1	7
142	Passivation of Steel and Stainless Steel in Alkaline Media Simulating Concrete. , 2018, , 365-375.		7
143	The chemical state of arsenic in minerals of environmental interestan XPS and an XAES study. Annali Di Chimica, 2003, 93, 11-9.	0.6	7
144	Determination of the corrosion rate inside historical brass wind instruments – Proof of concept. Materials and Corrosion - Werkstoffe Und Korrosion, 2016, 67, 1336-1343.	1.5	6

#	Article	IF	CITATIONS
145	Electrochemical and XPS surface analytical study on the reactivity of Niâ€free stainless steel in artificial saliva. Materials and Corrosion - Werkstoffe Und Korrosion, 2016, 67, 591-599.	1.5	6
146	Dissolution of brass alloys naturally aged in neutral solutions – an electrochemical and surface analytical study. RSC Advances, 2016, 6, 90654-90665.	3.6	6
147	Determination of the limit of detection by X-ray photoelectron spectroscopy for As, Zn and Pb oxides in SiO2 matrix as model systems for environmental investigations. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 121, 38-46.	2.9	6
148	Model Protective Films on Cu-Zn Alloys Simulating the Inner Surfaces of Historical Brass Wind Instruments by EIS and XPS. Frontiers in Chemistry, 2020, 8, 272.	3.6	6
149	Zinc Diisopropyl Dithiophosphate by XPS. Surface Science Spectra, 2001, 8, 97-104.	1.3	5
150	ToFâ€SIMS of polyphosphate glasses. Surface and Interface Analysis, 2013, 45, 579-582.	1.8	5
151	4. Attenuated total reflection-Fourier transform infrared spectroscopy: A powerful tool for investigating polymer surfaces and interfaces. , 2014, , 113-152.		5
152	Mechanical and tribological properties of boron oxide and zinc borate glasses. Journal of Commonwealth Law and Legal Education, 2016, 57, 233-244.	0.5	5
153	KAT Ligation for Rapid and Facile Covalent Attachment of Biomolecules to Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 29113-29121.	8.0	5
154	Role of Boron in the Tribochemistry of Thermal Films Formed in the Presence of ZnDTP and Dispersant Additives. Tribology Letters, 2017, 65, 1.	2.6	4
155	Degradation Products on Byzantine Glasses from Northern Tunisia. Applied Sciences (Switzerland), 2020, 10, 7523.	2.5	4
156	Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysis—Determination of lateral resolution and sharpness in beamâ€based methods with a range from nanometres to micrometres and its implementation for imaging laboratory Xâ€ray photoelectron spectrometers (XPS). Surface and Interface Analysis, 0,	1.8	4
157	The effect of impurities on the anodic process in an industrial pyrophosphate copper bath. Journal of Applied Electrochemistry, 1986, 16, 463-471.	2.9	3
158	In situ attenuated total reflection (ATR) spectroscopic analysis of tribological phenomena. Tribology Series, 2002, 40, 199-206.	0.1	3
159	Additive-surface interaction in boundary lubrication: A combinatorial approach. Tribology Series, 2002, 40, 49-57.	0.1	3
160	Rubber cure: Accelerating agents as inhibitors of steel corrosion. Corrosion Science, 1985, 25, 217-221.	6.6	2
161	Effect of iron(III) and lead(II) on the quality of copper electrodeposited from a pyrophosphate bath. Journal of Applied Electrochemistry, 1989, 19, 37-42.	2.9	2
162	Ion Depletion Near a Solution Surface: Is Image-Charge Repulsion Sufficient?. Physical Review Letters, 2013, 111, 266102.	7.8	2

#	Article	IF	CITATIONS
163	Template-Stripped, Ultraflat Gold Surfaces with Coplanar, Embedded Titanium Micropatterns. Langmuir, 2013, 29, 9935-9943.	3.5	2
164	Surface and Bulk Modifications of Fibrous Erionite in Mimicked Gamble's Solution at Acidic pH. Minerals (Basel, Switzerland), 2021, 11, 914.	2.0	2
165	Continuous revolving barrel bioreactor tailored to the bioleaching microorganisms. Mining, Metallurgy and Exploration, 2006, 23, 196-202.	0.8	1
166	XPS, AES and ToFâ€SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels. Surface and Interface Analysis, 2000, 29, 460-467.	1.8	1
167	Spectroscopic evidence for clarifying the mechanism of toxic element removal by marble waste. Vacuum, 2021, , 110721.	3.5	1
168	Stainless Steels as Sustainable Solution for Concrete Reinforcement - From Laboratory to Practice. Key Engineering Materials, 0, 919, 171-177.	0.4	1
169	Fe10Cr and Fe15Cr as Standards for Stainless Steel Surface Characterization, by XPS. Surface Science Spectra, 2002, 9, 275-285.	1.3	0
170	The 15th European Conference on Applications of Surface and Interface Analysis. Surface and Interface Analysis, 2014, 46, 653-653.	1.8	0
171	A new test specimen for the determination of the field of view of smallâ€area Xâ€ray photoelectron spectrometers. Surface and Interface Analysis, 2020, 52, 890-894.	1.8	0
172	Reactive-Oxygen-Species-Mediated Surface Oxidation of Single-Molecule DNA Origami by an Atomic Force Microscope Tip-Mounted C60 Photocatalyst. ACS Nano, 2021, , .	14.6	0