Jacek Lubczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4861700/publications.pdf Version: 2024-02-01

INCER LUBCZAR

#	Article	IF	CITATIONS
1	Biodegradable, Flame-Retardant, and Bio-Based Rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application. Polymers, 2019, 11, 1816.	2.0	65
2	Kinetics and mechanism of initial steps of synthesis of polyetherols from melamine and ethylene carbonate. Journal of Applied Polymer Science, 2004, 93, 294-300.	1.3	37
3	New thermoplastic polyurethane elastomers based on aliphatic–aromatic chain extenders with different content of sulfur atoms. Journal of Thermal Analysis and Calorimetry, 2015, 121, 397-410.	2.0	32
4	New melamine resins. I. Synthesis of reactive solvents for melamine. Journal of Applied Polymer Science, 1998, 67, 1039-1049.	1.3	29
5	1H-NMR study of reaction of melamine with oxiranes. Journal of Applied Polymer Science, 1995, 58, 559-564.	1.3	18
6	The biodegradable cellulose-derived polyol and polyurethane foam. Polymer Testing, 2021, 100, 107250.	2.3	17
7	Addition of oxiranes to the hydroxymethyl derivatives of melamine. Part IV. Preparation of polyetherols from (methoxymethyl)melamine. Polimery, 1990, 35, 194-199.	0.4	17
8	Polyetherols and polyurethane foams from starch. Polymer Testing, 2021, 93, 106884.	2.3	15
9	Polyhydroxyalkyl derivatives and polyetherols obtain from azacyclic compounds. Part I. Reactions with oxiranes. Polimery, 2011, 56, 360-368.	0.4	15
10	Polyurethane Foams of Improved Thermal Stability. Macromolecular Materials and Engineering, 2002, 287, 665-670.	1.7	14
11	Hydroxyalkylation of parabanic acid. III. Polymers from parabanic acid and ethylene carbonate. Journal of Applied Polymer Science, 2006, 100, 1443-1449.	1.3	14
12	Polyhydroxyalkyl derivatives and polyetherols obtained from azacyclic compounds. Part II. Reactions with formaldehyde and alkylene carbonates. Polimery, 2011, 56, 452-460.	0.4	14
13	Hydroxyalkylation of barbituric acid. II. Synthesis of polyetherols with pyrimidine ring. Journal of Applied Polymer Science, 2007, 106, 4067-4074.	1.3	13
14	Study of reaction betweenN,N,N?,N?,N?-pentakis (hydroxymethyl) melamine and ethylene or propylene oxide. Journal of Applied Polymer Science, 1997, 65, 2589-2602.	1.3	12
15	Reactions of hydroxymethyl derivatives of uric acid with oxiranes. I. Synthesis of polyetherols with purine rings. Journal of Applied Polymer Science, 2000, 77, 2667-2677.	1.3	12
16	Polyetherols from isocyanuric acid and ethylene carbonate. Journal of Applied Polymer Science, 2004, 91, 2750-2755.	1.3	12
17	Synthesis and applications of oligoetherols with perhydroâ€1,3,5â€triazine ring and boron. Journal of Applied Polymer Science, 2013, 127, 2057-2066.	1.3	12
18	The Maillard reaction of bisoprolol fumarate with various reducing carbohydrates. European Journal of Pharmaceutical Sciences, 2014, 59, 1-11.	1.9	12

Јасек Lubczak

#	Article	IF	CITATIONS
19	Synthesis ofs-triazine polyetherols from bis(methoxymethyl)melamine and oxiranes. Journal of Applied Polymer Science, 1997, 66, 423-433.	1.3	11
20	Polyetherols from isocyanuric acid and propylene carbonate. Journal of Applied Polymer Science, 2005, 98, 2130-2138.	1.3	11
21	Modification of polyurethane foams with 1,3,5-triazine ring and boron. Macromolecular Research, 2017, 25, 317-324.	1.0	11
22	Synthesis of oligoetherols from mixtures of melamine and boric acid and polyurethane foams formed from these oligoetherols. Polymer Bulletin, 2019, 76, 2253-2275.	1.7	10
23	Oligoetherols and polyurethane foams with 1,3,5-triazine ring and boron atoms. Polimery, 2012, 57, 819-829.	0.4	10
24	Preparation of new polymers from heterocyclic compounds and reactive solvents of melamine. Journal of Applied Polymer Science, 2003, 90, 3390-3401.	1.3	9
25	Application of products of reaction between melamine and glycidol as substrates for oligoetherols and polyurethane foams containing 1,3,5-triazine rings. Polymer International, 2013, 62, 1735-1743.	1.6	9
26	Oligoetherols and polyurethane foams obtained from metasilicic acid. Polymer Bulletin, 2018, 75, 1579-1596.	1.7	8
27	Polyurethane Foams with 1,3,5-Triazine Ring and Silicon Atoms. Macromolecular Research, 2019, 27, 543-550.	1.0	8
28	Flame retardant polyurethane foams with starch unit. Polymer Testing, 2021, 104, 107395.	2.3	8
29	Reaction of uric acid with excess of propylene carbonate. Journal of Applied Polymer Science, 2006, 101, 2482-2487.	1.3	7
30	Polyurethane Foams with Pyrimidine Rings. Polish Journal of Chemical Technology, 2014, 16, 1-6.	0.3	7
31	Thermally resistant polyurethane foams with reduced flammability. Journal of Cellular Plastics, 2018, 54, 561-576.	1.2	7
32	Boron-Containing Non-Flammable Polyurethane Foams. Polymer-Plastics Technology and Materials, 2019, 58, 394-404.	0.6	7
33	From starch to oligoetherols and polyurethane foams. Polymer Bulletin, 2020, 77, 5725-5751.	1.7	7
34	Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation. International Journal of Molecular Sciences, 2021, 22, 69.	1.8	7
35	Hydroxyalkylation of barbituric acid. I. Hydroxymethyl derivatives of barbituric acidâ \in "Precursors of polyetherols with a pyrimidine ring. Journal of Applied Polymer Science, 2006, 101, 3468-3478.	1.3	6
36	Oligoetherols and polyurethane foams obtained from melamine diborate. Journal of Polymer Research, 2017, 24, 1.	1.2	6

Јасек Цивсzак

#	Article	IF	CITATIONS
37	Polyol and polyurethane foam from cellulose hydrolysate. Journal of Chemical Technology and Biotechnology, 2021, 96, 881-889.	1.6	6
38	ew possibilities to synthesize oligoetherols with azacyclic rings. Polimery, 2011, 56, 856-860.	0.4	6
39	Kinetics and mechanism of addition of parabanic acid (imidazolidine-2,4,5-trione) to oxiranes. International Journal of Chemical Kinetics, 2003, 35, 73-80.	1.0	5
40	Hydroxyalkylation of parabanic acid. II. Reactions of parabanic acid with oxiranes. Journal of Applied Polymer Science, 2004, 94, 317-326.	1.3	5
41	Application of glycidol in synthesis of oligoetherols with perhydro-1,3,5-triazine ring. Journal of Applied Polymer Science, 2011, 122, 417-426.	1.3	5
42	Reactions taking place in the systemN,N,N′,N′,N″- pentakis(hydroxymethyl)melamine-oxirane in aqueous media. Journal of Applied Polymer Science, 2000, 76, 824-836.	1.3	4
43	Reactions of hydroxymethyl derivatives of uric acid with oxiranes. II. An analysis of reaction course and product structure. Journal of Applied Polymer Science, 2002, 83, 1955-1962.	1.3	4
44	Hydroxyalkylation of parabanic acid. I. Reactions with formaldehyde. Journal of Applied Polymer Science, 2002, 83, 2858-2872.	1.3	4
45	Synthesis of polyetherols with isocyanuric ring. Kinetics and mechanisms of reactions, part 1: Reaction between isocyanuric acid and ethylene carbonate. International Journal of Chemical Kinetics, 2009, 41, 512-522.	1.0	4
46	Oligoetherols Obtained from Uric Acid, Glycidol, and Alkylene Carbonates and Their Use to Obtain Polyurethane Foams of Enhanced Thermal Resistance. Polymer-Plastics Technology and Engineering, 2017, 56, 13-21.	1.9	4
47	Polyetherols with purine ring. Polimery, 2005, 50, 805-811.	0.4	4
48	Reactions of hydroxyalkyl esters with phenyl isocyanate. Journal of Applied Polymer Science, 2005, 96, 1357-1367.	1.3	3
49	Synthesis of polyetherols with purine ring. Kinetics and mechanisms of reactions, part 1: Reaction of hydroxymethyl derivatives of uric acid with oxiranes. International Journal of Chemical Kinetics, 2005, 37, 464-471.	1.0	3
50	The Kinetics and Mechanism of the Reaction between Barbituric Acid and Glycidol, Part I: The Products Analysis. International Journal of Chemical Kinetics, 2017, 49, 259-266.	1.0	3
51	Synthesis of polyetherols with purine ring. Kinetics and mechanisms of reactions, part 2: Reactions in the presence of triethylamine. International Journal of Chemical Kinetics, 2005, 37, 472-482.	1.0	2
52	Reactions of trithiocyanuric acid with oxiranes. IV. Analysis of the initial stages of the synthesis of polyetherols. Journal of Applied Polymer Science, 2006, 100, 4917-4920.	1.3	2
53	Reactions of hydroxymethyl derivatives of uric acid with oxiranes: Recognition of mechanism based on kinetic studies. International Journal of Chemical Kinetics, 2006, 38, 345-350.	1.0	2
54	Kinetics and mechanism of formation of polymeric products during the hydroxyalkylation of parabanic acid with oxiranes. International Journal of Chemical Kinetics, 2006, 38, 399-406.	1.0	2

Јасек Цивсzак

#	Article	IF	CITATIONS
55	HYDROXYALKYL DERIVATIVES OF 5,5-DIETHYLBARBITURIC ACID. Heterocyclic Communications, 2008, 14, .	0.6	2
56	Synthesis of polyetherols with isocyanuric ring. Kinetics and mechanisms of reactions, part 2: Consecutive reaction of ethylene carbonate with isocyanuric acid. International Journal of Chemical Kinetics, 2009, 41, 523-531.	1.0	2
57	The Kinetics and Mechanism of the Reaction between Barbituric Acid and Glycidol, Part II: Glycidol Reacts with Imide and Methylene Groups. International Journal of Chemical Kinetics, 2017, 49, 267-282.	1.0	2
58	Analysis of the Possibility and Conditions of Application of Methylene Blue to Determine the Activity of Radicals in Model System with Preaccelerated Cross-Linking of Polyester Resins. International Journal of Analytical Chemistry, 2019, 2019, 1-8.	0.4	2
59	Polyurethane foams with 1,3,5-triazine ring, boron and silicon. Journal of Cellular Plastics, 2020, 56, 187-205.	1.2	2
60	Polyetherols and polyurethane foams with cellulose subunits. Polymer-Plastics Technology and Materials, 2021, 60, 440-452.	0.6	2
61	Hydroxyalkylation of barbituric acid. III. Product analysis and reaction pathway. Journal of Applied Polymer Science, 2009, 112, 1601-1606.	1.3	1
62	Application of reactive solvents of melamine for synthesis of polyetherols with perhydro-1,3,5-triazine rings. Journal of Applied Polymer Science, 2011, 119, 776-785.	1.3	1
63	Kinetics and Mechanism of the Reaction between Barbituric Acid and Glycidol, Part III: Methylene Group Reaction with Glycidol at High Concentration. International Journal of Chemical Kinetics, 2018, 50, 122-132.	1.0	1
64	É-caprolactone and pentaerythritol derived oligomer for rigid polyurethane foams preparation. Journal of Cellular Plastics, 2022, 58, 757-775.	1.2	1
65	Synthesis of polyetherols with isocyanuric ring: Kinetics and mechanisms of reactions in the presence of DABCO as catalyst. International Journal of Chemical Kinetics, 2010, 42, 550-561.	1.0	0