Guifeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486170/publications.pdf

Version: 2024-02-01

		1040056	839539
29	347	9	18
papers	citations	h-index	g-index
30	30	30	398
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Two-Dimensional GaN: An Excellent Electrode Material Providing Fast Ion Diffusion and High Storage Capacity for Li-Ion and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38978-38984.	8.0	97
2	Centrosymmetric Li ₂ NaN: a superior topological electronic material with critical-type triply degenerate nodal points. Journal of Materials Chemistry C, 2019, 7, 1316-1320.	5 . 5	63
3	Pentagonal B ₂ C monolayer with extremely high theoretical capacity for Li-/Na-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 6278-6285.	2.8	30
4	Defect assisted coupling of a MoS ₂ /TiO ₂ interface and tuning of its electronic structure. Nanotechnology, 2016, 27, 355203.	2.6	24
5	Phase Transition-Promoted Hydrogen Evolution Performance of MoS ₂ /VO ₂ Hybrids. Journal of Physical Chemistry C, 2018, 122, 2618-2623.	3.1	20
6	Prediction of two-dimensional CP ₃ as a promising electrode material with a record-high capacity for Na ions. Nanoscale Advances, 2020, 2, 5271-5279.	4.6	12
7	Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling. IScience, 2022, 25, 104126.	4.1	12
8	Prediction of the electronic structure of single-walled black phosphorus nanotubes. Physical Chemistry Chemical Physics, 2016, 18, 15177-15181.	2.8	11
9	Geometric distortion and spin-dependent electronic structure of C6H6-adsorbed Fe3O4(001): A first-principles study. Journal of Applied Physics, 2017, 121, .	2.5	10
10	Structure and Optical Properties of AlN Crystals Grown by Metal Nitride Vapor Phase Epitaxy with Different V/III Ratios. ACS Omega, 0, , .	3.5	8
11	Cobalt Supported on BN Catalyst with High Bâ€O Defects and Its Efficient Hydrodeoxygenation Performance of HMF to DMF**. ChemistrySelect, 2022, 7, .	1.5	7
12	Magnetic and electronic properties of Fe3O4/graphene heterostructures: First principles perspective. Journal of Applied Physics, 2013, 113, .	2.5	6
13	Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination. Applied Physics A: Materials Science and Processing, 2012, 108, 615-620.	2.3	5
14	Annealing induced amorphous/crystalline silicon interface passivation by hydrogen atom diffusion. Journal of Materials Science: Materials in Electronics, 2016, 27, 705-710.	2.2	5
15	Influence of nitrogen flow ratio on properties of c-axis oriented AlN films grown by RF magnetron sputtering. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	5
16	Electric field tunable half-metallic characteristic at Fe ₃ O ₄ /BaTiO ₃ interfaces. Physical Chemistry Chemical Physics, 2017, 19, 4330-4336.	2.8	4
17	Competitive Growth Mechanism of WS ₂ /MoS ₂ Vertical Heterostructures at High Temperature. Physica Status Solidi (B): Basic Research, 2017, 254, 1700219.	1.5	4
18	Photorefractive Properties Varied With Li Composition in \$hbox{LiNbO}_{3}\$:Fe Crystals. IEEE Photonics Journal, 2012, 4, 1892-1899.	2.0	3

#	Article	IF	CITATIONS
19	Magnetic and electronic properties of Cu1â^'xFexO from first principles calculations. RSC Advances, 2013, 3, 4447.	3.6	3
20	Improved ability of artificial photosynthesis by using InGaN/AlGaN/GaN electrode. Applied Physics Express, 2019, 12, 111003.	2.4	3
21	A green synthesis of CISe nanocrystal ink and preparation of quantum dot sensitized solar cells. Functional Materials Letters, 2020, 13, 2050028.	1.2	3
22	Investigations of the photoelectrochemical properties of different contents In of InxGa1-xN in CO2 reduction. Research on Chemical Intermediates, 2021, 47, 4825-4835.	2.7	3
23	Study on the temperature dependence of the OHâ° absorption band in Hf-doped LiNbO3 crystals. Journal of Materials Science, 2014, 49, 3775-3779.	3.7	2
24	CuZnSn(SxSe1-x)4 Solar Cell Prepared by the Sol-Gel Method Following a Modified Three-Step Selenization Process. Crystals, 2019, 9, 474.	2.2	2
25	Cu-related defects and optical properties in copper–indium–selenide quantum dots by a green synthesis. Journal of Applied Physics, 2022, 131, .	2.5	2
26	Investigation of irradiation donors in electron irradiated CZ-Si., 2006,,.		1
27	Neutron irradiation defects in Czochralski silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 669-676.	0.8	1
28	Improved photocatalytic activity and stability of InGaN quantum dots/C3N4 heterojunction photoelectrode for CO2 reduction and hydrogen production. Nanotechnology, 2021, 32, 505705.	2.6	1
29	Synthesis of Weyl Semi-Metal Co3Sn2S2 by Hydrothermal Method and Its Physical Properties. Metals, 2022, 12, 830.	2.3	O