
Anne Giroir-Fendler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4861209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cu-Co mixed oxide catalysts for the total oxidation of toluene and propane. Catalysis Today, 2022, 384-386, 238-245.	4.4	22
2	Yttrium-modified Co3O4 as efficient catalysts for toluene and propane combustion: Effect of yttrium content. Journal of Hazardous Materials, 2022, 437, 129316.	12.4	18
3	Boosting propene oxidation activity over LaFeO3 perovskite catalysts by cobalt substitution. Applied Catalysis A: General, 2022, 643, 118779.	4.3	6
4	Effect of the precipitation pH on the characteristics and performance of Co3O4 catalysts in the total oxidation of toluene and propane. Applied Catalysis B: Environmental, 2021, 282, 119566.	20.2	68
5	Spinel Co3O4 oxides-support synergistic effect on catalytic oxidation of toluene. Applied Catalysis A: General, 2021, 614, 118044.	4.3	14
6	Total Oxidation of Toluene and Propane over Supported Co ₃ O ₄ Catalysts: Effect of Structure/Acidity of MWW Zeolite and Cobalt Loading. ACS Applied Materials & Interfaces, 2021, 13, 15143-15158.	8.0	22
7	Total oxidation of propane over Co3O4-based catalysts: Elucidating the influence of Zr dopant. Applied Catalysis B: Environmental, 2021, 298, 120606.	20.2	78
8	Development of a Nonequilibrium Multisite Kinetic Model for NH3-SCR of NOx on CHA Cu-SAPO-34: Impact of Active Site Configurations and Locations. Industrial & Engineering Chemistry Research, 2020, 59, 15848-15864.	3.7	8
9	Highly Efficient Ru Supported on Carbon Nanosphere Nanoparticles for Ciprofloxacin Removal: Effects of Operating Parameters, Degradation Pathways, and Kinetic Study. Industrial & Engineering Chemistry Research, 2020, 59, 15515-15530.	3.7	16
10	The Influence of Residual Sodium on the Catalytic Oxidation of Propane and Toluene over Co3O4 Catalysts. Catalysts, 2020, 10, 867.	3.5	7
11	Nanocrystalline Co3O4 catalysts for toluene and propane oxidation: Effect of the precipitation agent. Applied Catalysis B: Environmental, 2020, 273, 118894.	20.2	81
12	Spotlight on Large Surface Copper Cluster Role of Cuâ€5APOâ€34 Catalyst in Standard NH ₃ â€5CR Performances. ChemCatChem, 2020, 12, 2807-2822.	3.7	11
13	Study of hydrothermal aging impact on Na- and P-modified diesel oxidation catalyst (DOC). Journal of Catalysis, 2019, 375, 329-338.	6.2	13
14	The Effect of Citric Acid Concentration on the Properties of LaMnO3 as a Catalyst for Hydrocarbon Oxidation. Catalysts, 2019, 9, 226.	3.5	40
15	Effect of Na, K, Ca and P-impurities on diesel oxidation catalysts (DOCs). Chemical Engineering Journal, 2018, 352, 333-342.	12.7	25
16	Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chemical Engineering Journal, 2017, 315, 392-402.	12.7	150
17	Catalytic oxidation of 1,2-dichloropropane over supported LaMnO oxides catalysts. Applied Catalysis B: Environmental, 2017, 201, 552-560.	20.2	81
18	Study of Lanthanum Manganate and Yttriumâ€Stabilized Zirconiaâ€Supported Palladium Dualâ€Bed Catalyst System for the Total Oxidation of Methane: A Study by ¹⁸ O ₂ / ¹⁶ O ₂ Isotopic Exchange. ChemCatChem, 2016, 8, 1921-1928.	3.7	9

#	Article	IF	CITATIONS
19	Low-temperature catalytic oxidation of vinyl chloride over Ru modified Co ₃ O ₄ catalysts. RSC Advances, 2016, 6, 99577-99585.	3.6	35
20	Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride. Applied Catalysis B: Environmental, 2016, 186, 173-183.	20.2	95
21	Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 2016, 180, 29-37.	20.2	77
22	Catalytic Oxidation of Propene over Pd Catalysts Supported on CeO2, TiO2, Al2O3 and M/Al2O3 Oxides (M = Ce, Ti, Fe, Mn). Catalysts, 2015, 5, 671-689.	3.5	71
23	Remarkable Enhancement of O ₂ Activation on Yttriumâ€Stabilized Zirconia Surface in a Dual Catalyst Bed. Angewandte Chemie - International Edition, 2014, 53, 11342-11345.	13.8	25
24	LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Applied Catalysis B: Environmental, 2014, 148-149, 490-498.	20.2	211
25	(La0.8A0.2)MnO3 (A = Sr, K) perovskite catalysts for NO and C10H22 oxidation and selective reduction of NO by C10H22. Chinese Journal of Catalysis, 2014, 35, 1299-1304.	14.0	9
26	Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 2013, 129, 509-516.	20.2	270
27	The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Applied Catalysis B: Environmental, 2013, 134-135, 310-315.	20.2	114
28	Kinetics of the propene oxidation over a Pt/alumina catalyst. Catalysis Communications, 2013, 36, 63-66.	3.3	27
29	Sulphated TiO2 for selective catalytic reduction of NOx by n-decane. Catalysis Today, 2011, 176, 48-55.	4.4	8
30	Parametric study of propene oxidation over Pt and Au catalysts supported on sulphated and unsulphated titania. Applied Catalysis B: Environmental, 2011, 102, 180-189.	20.2	28
31	Relation between partial propene oxidation, sulphate content and selective catalytic reduction of NOx by propene on ceria/sulphated titania. Applied Catalysis B: Environmental, 2010, 96, 434-440.	20.2	23