Steven X Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4860987/publications.pdf

Version: 2024-02-01

57631 25716 12,732 121 44 108 citations h-index g-index papers 121 121 121 6921 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distributed Adaptive Leader-Following Consensus for Nonlinear Multiagent Systems With Actuator Failures Under Directed Switching Graphs. IEEE Transactions on Cybernetics, 2023, 53, 211-221.	6.2	5
2	Gradient Monitored Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 4106-4119.	7.2	3
3	Interaction-Aware Graph Neural Networks for Fault Diagnosis of Complex Industrial Processes. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 6015-6028.	7.2	31
4	Curriculum-Based Deep Reinforcement Learning for Quantum Control. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 8852-8865.	7.2	14
5	PLC-Informed Distributed Game Theoretic Learning of Energy-Optimal Production Policies. IEEE Transactions on Cybernetics, 2023, 53, 5424-5435.	6.2	5
6	Distributed Self-Optimization of Modular Production Units: A State-Based Potential Game Approach. IEEE Transactions on Cybernetics, 2022, 52, 2174-2185.	6.2	9
7	Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1700-1716.	4.7	244
8	Optimal Observer-Based Fault Detection and Estimation Approaches for T–S Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2022, 30, 579-590.	6.5	16
9	Robust Asymptotic Fault Estimation of Discrete-Time Interconnected Systems With Sensor Faults. IEEE Transactions on Cybernetics, 2022, 52, 1691-1700.	6.2	22
10	A Residual-Generator-Based Plug-and-Play Control Scheme Toward Enhancing Power Quality in AC Microgrids. IEEE Transactions on Industrial Electronics, 2022, 69, 8146-8156.	5.2	5
11	A Comparative Study of Deep Neural Network-Aided Canonical Correlation Analysis-Based Process Monitoring and Fault Detection Methods. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 6158-6172.	7.2	25
12	Extended Relevance Vector Machine-Based Remaining Useful Life Prediction for DC-Link Capacitor in High-Speed Train. IEEE Transactions on Cybernetics, 2022, 52, 9746-9755.	6.2	21
13	Event-Triggered Parity Space Approach to Fault Detection for Linear Discrete-Time Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 4813-4822.	5.9	12
14	Hierarchical Structure-Based Fault-Tolerant Tracking Control of Multiple 3-DOF Laboratory Helicopters. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 4247-4258.	5.9	8
15	Multivariate Relevance Vector Regression Based Degradation Modeling and Remaining Useful Life Prediction. IEEE Transactions on Industrial Electronics, 2022, 69, 9514-9523.	5. 2	11
16	An Asynchronized Observer Based Fault Detection Approach for Uncertain Switching Systems With Mode Estimation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 514-518.	2.2	3
17	Reinforcement Learning-Aided Performance-Driven Fault-Tolerant Control of Feedback Control Systems. IEEE Transactions on Automatic Control, 2022, 67, 3013-3020.	3.6	12
	A Krein space-based approach to event-triggered amplimath		

A Krein space-based approach to event-triggered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e264" altimg="si5.svg" > mml:msub > mml:mrow > mml:mi> (/mml:mio > (/mml:mrow > mml:mi> â^ž < /mml:mrow > (/mml:mrow > (/mml:mrow > mml:mi) = (/mml:mrow > (/mml:mr

#	Article	IF	CITATIONS
19	An Integrated Design Scheme for SKR-Based Data-Driven Dynamic Fault Detection Systems. IEEE Transactions on Industrial Informatics, 2022, 18, 6828-6839.	7.2	2
20	Neural logic rule layers. Information Sciences, 2022, 596, 185-201.	4.0	4
21	Recursive Distributed Filter Design for 2-D Systems Over Sensor Networks: On Component-Based, Node-Wise and Dynamic Event-Triggered Scheme. IEEE Transactions on Signal and Information Processing Over Networks, 2022, 8, 584-596.	1.6	4
22	Shared Temporal Attention Transformer for Remaining Useful Lifetime Estimation. IEEE Access, 2022, 10, 74244-74258.	2.6	12
23	Complex System Monitoring Based on Distributed Least Squares Method. IEEE Transactions on Automation Science and Engineering, 2021, 18, 1892-1900.	3.4	18
24	A Just-In-Time-Learning-Aided Canonical Correlation Analysis Method for Multimode Process Monitoring and Fault Detection. IEEE Transactions on Industrial Electronics, 2021, 68, 5259-5270.	5.2	78
25	Key Performance Indicators Based Fault Detection and Isolation Using Data-Driven Approaches. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 291-295.	2.2	8
26	A New Observer-Based Cooperative Fault-Tolerant Tracking Control Method With Application to Networked Multiaxis Motion Control System. IEEE Transactions on Industrial Electronics, 2021, 68, 7422-7432.	5.2	65
27	A Real-Time Performance Recovery Framework for Vision-Based Control Systems. IEEE Transactions on Industrial Electronics, 2021, 68, 1571-1580.	5. 2	11
28	Design of a Discrete-Time Fault-Tolerant Quantum Filter and Fault Detector. IEEE Transactions on Cybernetics, 2021, 51, 889-899.	6.2	17
29	Parity Space Vector Machine Approach to Robust Fault Detection for Linear Discrete-Time Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4251-4261.	5 . 9	18
30	Performance-Based Fault Detection and Fault-Tolerant Control for Nonlinear Systems With T–S Fuzzy Implementation. IEEE Transactions on Cybernetics, 2021, 51, 801-814.	6.2	32
31	Gaussian Process Regression With Maximizing the Composite Conditional Likelihood. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	6
32	Performance Degradation Monitoring and Recovery of Vision-Based Control Systems. IEEE Transactions on Control Systems Technology, 2021, 29, 2712-2719.	3.2	3
33	Fixed-Time Fault-Tolerant Formation Control for Heterogeneous Multi-Agent Systems With Parameter Uncertainties and Disturbances. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 2121-2133.	3 . 5	80
34	Control performance monitoring and degradation recovery in automatic control systems: A review, some new results, and future perspectives. Control Engineering Practice, 2021, 111, 104790.	3.2	25
35	Decentralized learning of energy optimal production policies using PLC-informed reinforcement learning. Computers and Chemical Engineering, 2021, 152, 107382.	2.0	14
36	Guest Editorial: Data-Driven Management of Complex Systems Through Plant-Wide Performance Supervision. IEEE Transactions on Industrial Informatics, 2021, 17, 6324-6328.	7.2	1

#	Article	IF	Citations
37	A Sparse Nonstationary Trigonometric Gaussian Process Regression and Its Application on Nitrogen Oxide Prediction of the Diesel Engine. IEEE Transactions on Industrial Informatics, 2021, 17, 8367-8377.	7.2	7
38	A Fault-Tolerant Control Approach Based on Image Processing Applied to Three-Tank System. IEEE Access, 2021, 9, 149520-149528.	2.6	0
39	Performance-Based Fault-Tolerant Control and Performance Recovery. , 2021, , 601-628.		2
40	Fault-Tolerant Control for Systems With Model Uncertainty and Multiplicative Faults. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 514-524.	5.9	25
41	A Correlation-Based Distributed Fault Detection Method and Its Application to a Hot Tandem Rolling Mill Process. IEEE Transactions on Industrial Electronics, 2020, 67, 2380-2390.	5 . 2	35
42	Control Performance-Based Fault-Tolerant Control Strategy for Singular Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2398-2407.	5.9	22
43	Performance Supervised Fault Detection Schemes for Industrial Feedback Control Systems and their Data-Driven Implementation. IEEE Transactions on Industrial Informatics, 2020, 16, 2849-2858.	7.2	21
44	Voltage Difference Residual-Based Open-Circuit Fault Diagnosis Approach for Three-Level Converters in Electric Traction Systems. IEEE Transactions on Power Electronics, 2020, 35, 3012-3028.	5 . 4	69
45	Performance-Based Fault-Tolerant Control Approaches For Industrial Processes With Multiplicative Faults. IEEE Transactions on Industrial Informatics, 2020, 16, 4759-4768.	7.2	23
46	Optimal Detection Schemes for Multiplicative Faults in Uncertain Systems With Application to Rolling Mill Processes. IEEE Transactions on Control Systems Technology, 2020, 28, 2432-2444.	3.2	11
47	Design of a Quantum Projection Filter. IEEE Transactions on Automatic Control, 2020, 65, 3693-3700.	3.6	10
48	A distribution independent data-driven design scheme of optimal dynamic fault detection systems. Journal of Process Control, 2020, 95, 1-9.	1.7	14
49	An \$H_{i}/H_{infty}\$ Optimization Approach to Event-Triggered Fault Detection for Linear Discrete Time Systems. IEEE Transactions on Automatic Control, 2020, 65, 4464-4471.	3.6	47
50	Distributed data-driven optimal fault detection for large-scale systems. Journal of Process Control, 2020, 96, 94-103.	1.7	19
51	A Data-Driven Fault Detection Scheme for Complex Industrial Systems Using Riemannian Metric and Randomized Algorithms. , 2020, , .		0
52	An Optimal Data-Driven Approach to Distribution Independent Fault Detection. IEEE Transactions on Industrial Informatics, 2020, 16, 6826-6836.	7.2	15
53	Distributed process monitoring based on canonical correlation analysis with partly-connected topology. Control Engineering Practice, 2020, 101, 104500.	3.2	38
54	An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes. Energies, 2020, 13, 807.	1.6	55

#	Article	IF	Citations
55	Gap metric techniques and their application to fault detection performance analysis and fault isolation schemes. Automatica, 2020, 118, 109029.	3.0	27
56	A Novel Approach to State and Unknown Input Estimation for Takagi–Sugeno Fuzzy Models With Applications to Fault Detection. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2053-2063.	3.5	44
57	Fault Identifiability Analysis of Linear Discrete Time-Varying Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 2371-2381.	3.5	12
58	Application of randomized algorithms to assessment and design of observer-based fault detection systems. Automatica, 2019, 107, 175-182.	3.0	47
59	Robust \$H_infty\$ Filtering for Two-Dimensional Uncertain Linear Discrete Time-Varying Systems: A Krein Space-Based Method. IEEE Transactions on Automatic Control, 2019, 64, 5124-5131.	3.6	29
60	Potential Game based Distributed Optimization of Modular Production Units., 2019,,.		3
61	Performance-based fault detection and fault-tolerant control for automatic control systems. Automatica, 2019, 99, 308-316.	3.0	114
62	A Distributed Canonical Correlation Analysis-Based Fault Detection Method for Plant-Wide Process Monitoring. IEEE Transactions on Industrial Informatics, 2019, 15, 2710-2720.	7.2	110
63	Probability-Relevant Incipient Fault Detection and Diagnosis Methodology With Applications to Electric Drive Systems. IEEE Transactions on Control Systems Technology, 2019, 27, 2766-2773.	3.2	64
64	A survey on model-based fault diagnosis for linear discrete time-varying systems. Neurocomputing, 2018, 306, 51-60.	3.5	72
65	Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications. Automatica, 2018, 93, 42-54.	3.0	79
66	A Plug-and-Play Monitoring and Control Architecture for Disturbance Compensation in Rolling Mills. IEEE/ASME Transactions on Mechatronics, 2018, 23, 200-210.	3.7	69
67	A Fault Detection Approach for Nonlinear Systems Based on Data-Driven Realizations of Fuzzy Kernel Representations. IEEE Transactions on Fuzzy Systems, 2018, 26, 1800-1812.	6.5	29
68	Fault Detection for Non-Gaussian Processes Using Generalized Canonical Correlation Analysis and Randomized Algorithms. IEEE Transactions on Industrial Electronics, 2018, 65, 1559-1567.	5.2	246
69	<inline-formula> <tex-math notation="LaTeX">\$H_{infty}\$ </tex-math> </inline-formula> Fault Estimation for 2-D Linear Discrete Time-Varying Systems Based on Krein Space Method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 2070-2079.	5.9	52
70	On-line Energy Optimization of Hybrid Production Systems Using Actor-Critic Reinforcement Learning. , 2018, , .		6
71	A New Method for Fault Tolerant Control through Q-Learning. IFAC-PapersOnLine, 2018, 51, 38-45.	0.5	7
72	Generalized CCA with Applications for Fault Detection and Estimation. , 2018, , .		4

#	Article	IF	CITATIONS
73	Fuzzy Observer-Based Fault Detection Design Approach for Nonlinear Processes. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 1941-1952.	5.9	60
74	Real-Time Optimization of Automatic Control Systems With Application to BLDC Motor Test Rig. IEEE Transactions on Industrial Electronics, 2017, 64, 4306-4314.	5.2	43
75	A KPI-based process monitoring and fault detection framework for large-scale processes. ISA Transactions, 2017, 68, 276-286.	3.1	41
76	Unbiased Minimum Variance Fault and State Estimation for Linear Discrete Time-Varying Two-Dimensional Systems. IEEE Transactions on Automatic Control, 2017, 62, 5463-5469.	3.6	109
77	A Probabilistic Approach to Robust Fault Detection for a Class of Nonlinear Systems. IEEE Transactions on Industrial Electronics, 2017, 64, 3930-3939.	5.2	38
78	Assessment of T2- and Q-statistics for detecting additive and multiplicative faults in multivariate statistical process monitoring. Journal of the Franklin Institute, 2017, 354, 668-688.	1.9	20
79	Control performance based fault detection for nonlinear systems., 2017,,.		3
80	Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access, 2017, 5, 20590-20616.	2.6	647
81	Self-optimization of energy consumption in complex bulk good processes using reinforcement learning., 2017,,.		11
82	A brief survey of different statistics for detecting multiplicative faults in multivariate statistical process monitoring. , $2016, , .$		4
83	Weighted Fuzzy Observer-Based Fault Detection Approach for Discrete-Time Nonlinear Systems via Piecewise-Fuzzy Lyapunov Functions. IEEE Transactions on Fuzzy Systems, 2016, 24, 1320-1333.	6.5	125
84	A New Scheme of Fault Detection for Linear Discrete Time-Varying Systems. IEEE Transactions on Automatic Control, 2016, 61, 2597-2602.	3.6	54
85	Parameterization of Nonlinear Observer-Based Fault Detection Systems. IEEE Transactions on Automatic Control, 2016, 61, 3687-3692.	3.6	44
86	Real-Time Fault Detection Approach for Nonlinear Systems and its Asynchronous T-S Fuzzy Observer-Based Implementation. IEEE Transactions on Cybernetics, 2016, 47, 1-12.	6.2	87
87	Optimal fault detection design via iterative estimation methods for industrial control systems. Journal of the Franklin Institute, 2016, 353, 359-377.	1.9	12
88	Canonical correlation analysis-based fault detection methods with application to alumina evaporation process. Control Engineering Practice, 2016, 46, 51-58.	3.2	171
89	Optimal Design of Residual-Driven Dynamic Compensator Using Iterative Algorithms With Guaranteed Convergence. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46, 548-558.	5.9	12
90	Design and Implementation of Lifecycle Management for Industrial Control Applications. IEEE Transactions on Control Systems Technology, 2015, 23, 1399-1410.	3.2	18

#	Article	IF	Citations
91	A New Soft-Sensor-Based Process Monitoring Scheme Incorporating Infrequent KPI Measurements. IEEE Transactions on Industrial Electronics, 2015, 62, 3843-3851.	5.2	69
92	On fault-tolerant control configurations for a class of nonlinear systems. Journal of the Franklin Institute, 2015, 352, 1397-1416.	1.9	21
93	On observer-based fault detection for nonlinear systems. Systems and Control Letters, 2015, 82, 18-25.	1.3	64
94	A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches. Journal of Process Control, 2015, 33, 112-126.	1.7	164
95	Dataâ€driven design of twoâ€degreeâ€ofâ€freedom controllers using reinforcement learning techniques. IET Control Theory and Applications, 2015, 9, 1011-1021.	1.2	26
96	Parity space-based fault detection for linear discrete time-varying systems with unknown input. Automatica, 2015, 59, 120-126.	3.0	89
97	A Survey of Fault Diagnosis and Fault-Tolerant Techniquesâ€"Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches. IEEE Transactions on Industrial Electronics, 2015, 62, 3757-3767.	5.2	2,166
98	Threshold computation for fault detection in linear discreteâ€time Markov jump systems. International Journal of Adaptive Control and Signal Processing, 2014, 28, 1106-1127.	2.3	14
99	Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems. Advances in Industrial Control, 2014, , .	0.4	370
100	Real-Time Implementation of Fault-Tolerant Control Systems With Performance Optimization. IEEE Transactions on Industrial Electronics, 2014, 61, 2402-2411.	5.2	520
101	Data-Driven Design and Optimization of Feedback Control Systems for Industrial Applications. IEEE Transactions on Industrial Electronics, 2014, 61, 6409-6417.	5.2	31
102	Data-driven realizations of kernel and image representations and their application to fault detection and control system design. Automatica, 2014, 50, 2615-2623.	3.0	135
103	A Review on Basic Data-Driven Approaches for Industrial Process Monitoring. IEEE Transactions on Industrial Electronics, 2014, 61, 6418-6428.	5.2	1,276
104	A Novel Scheme for Key Performance Indicator Prediction and Diagnosis With Application to an Industrial Hot Strip Mill. IEEE Transactions on Industrial Informatics, 2013, 9, 2239-2247.	7.2	223
105	Finite-horizon <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmins:mml="http://www.w3.org/1998/Math/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<td>nl:ฮาò <td>ml9arow></td></td></mml:mi></mml:mrow></mml:msub></mml:math>	nl :ฮาò <td>ml9arow></td>	ml 9a row>
106	49, 293-296. A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system. , 2013, , .		8
107	A data-driven approach for fault diagnosis in gearbox of wind energy conversion system. , 2013, , .		8
108	fault detection filter design for discrete-time Takagi–Sugeno fuzzy system. Automatica, 2013, 49, 1996-2005.	3.0	349

#	Article	IF	CITATIONS
109	Model-Based Fault Diagnosis Techniques. Advances in Industrial Control, 2013, , .	0.4	420
110	A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control, 2012, 22, 1567-1581.	1.7	1,110
111	Fault detection scheme for discrete-time Markov jump linear systems with mode-independent residual. , 2012, , .		5
112	Decentralized Networked Control System Design Using T–S Fuzzy Approach. IEEE Transactions on Fuzzy Systems, 2012, 20, 9-21.	6.5	81
113	A fault detection scheme for discrete-time Markov jump linear systems. , 2011, , .		1
114	Optimal fault detection for linear discrete time-varying systems. Automatica, 2010, 46, 1395-1400.	3.0	132
115	On Designing \$H_{infty}\$ Fault Detection Filter for Linear Discrete Time-Varying Systems. IEEE Transactions on Automatic Control, 2010, 55, 1689-1695.	3.6	95
116	Fuzzy State/Disturbance Observer Design for T–S Fuzzy Systems With Application to Sensor Fault Estimation. IEEE Transactions on Systems, Man, and Cybernetics, 2008, 38, 875-880.	5.5	193
117	Fault Detection for Uncertain Fuzzy Systems: An LMI Approach. IEEE Transactions on Fuzzy Systems, 2007, 15, 1251-1262.	6.5	239
118	Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica, 2007, 43, 912-920.	3.0	388
119	Parity relation based fault estimation for nonlinear systems: An LMI approach. International Journal of Automation and Computing, 2007, 4, 164-168.	4.5	36
120	Delay-dependent fault estimation for uncertain time-delay nonlinear systems: an LMI approach. International Journal of Robust and Nonlinear Control, 2006, 16, 913-933.	2.1	103
121	An LMI approach to design robust fault detection filter for uncertain LTI systems. Automatica, 2003, 39, 543-550.	3.0	518