## Mikhail Miroshnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4860966/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1 | Light-Assisted Rechargeable Lithium Batteries: Organic Molecules for Simultaneous Energy Harvesting and Storage. Nano Letters, 2021, 21, 907-913.                                                          | 9.1  | 57        |
| 2 | Nature-Inspired Purpurin Polymer for Li-Ion Batteries: Mechanistic Insights into Energy Storage via<br>Solid-State NMR and Computational Studies. Journal of Physical Chemistry C, 2020, 124, 17939-17948. | 3.1  | 6         |
| 3 | Bioderived Molecular Electrodes for Nextâ€Generation Energyâ€Storage Materials. ChemSusChem, 2020,<br>13, 2186-2204.                                                                                       | 6.8  | 32        |
| 4 | Bioderived Molecular Electrodes for Nextâ€Generation Energyâ€Storage Materials. ChemSusChem, 2020,<br>13, 2106-2106.                                                                                       | 6.8  | 0         |
| 5 | Made From Henna! A Fast-Charging, High-Capacity, and Recyclable Tetrakislawsone Cathode Material for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 13836-13844.               | 6.7  | 36        |
| 6 | Nature-Derived Sodium-Ion Battery: Mechanistic Insights into Na-Ion Coordination within Sustainable<br>Molecular Cathode Materials. ACS Applied Energy Materials, 2019, 2, 8596-8604.                      | 5.1  | 14        |
| 7 | A common tattoo chemical for energy storage: henna plant-derived naphthoquinone dimer as a green and sustainable cathode material for Li-ion batteries. RSC Advances, 2018, 8, 1576-1582.                  | 3.6  | 33        |
| 8 | <i>In Situ</i> Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials. Accounts of Chemical Research, 2016, 49, 1671-1680.                                                                     | 15.6 | 44        |
| 9 | Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers. Journal of Materials Chemistry A, 2016, 4, 12370-12386.                                  | 10.3 | 161       |