Anthony N Carlsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retrospective composite analysis of StartReact data indicates sex differences in simple reaction time are not attributable to response preparation. Behavioural Brain Research, 2022, 426, 113839.	1.2	3
2	A TMS-induced cortical silent period delays the contralateral limb for bimanual symmetrical movements and the reaction time delay is reduced on startle trials. Journal of Neurophysiology, 2022, , .	0.9	1
3	Response preparation of a secondary reaction time task is influenced by movement phase within a continuous visuomotor tracking task. European Journal of Neuroscience, 2022, 56, 3645-3659.	1.2	0
4	Transcranial direct current stimulation of supplementary motor area improves upper limb kinematics in Parkinson's disease. Clinical Neurophysiology, 2021, 132, 2907-2915.	0.7	11
5	Central nervous system physiology. Clinical Neurophysiology, 2021, 132, 3043-3083.	0.7	12
6	Response triggering by an acoustic stimulus increases with stimulus intensity and is best predicted by startle reflex activation. Scientific Reports, 2021, 11, 23612.	1.6	7
7	Increased auditory stimulus intensity results in an earlier and faster rise in corticospinal excitability. Brain Research, 2020, 1727, 146559.	1.1	7
8	An unperceived acoustic stimulus decreases reaction time to visual information in a patient with cortical deafness. Scientific Reports, 2020, 10, 5825.	1.6	1
9	Bimanual but not unimanual finger movements are triggered by a startling acoustic stimulus: evidence for increased reticulospinal drive for bimanual responses. Journal of Neurophysiology, 2020, 124, 1832-1838.	0.9	9
10	StartReact effects are dependent on engagement of startle reflex circuits: support for a subcortically mediated initiation pathway. Journal of Neurophysiology, 2019, 122, 2541-2547.	0.9	14
11	Visual processing is diminished during movement execution. PLoS ONE, 2019, 14, e0213790.	1.1	1
12	High-intensity transcranial magnetic stimulation reveals differential cortical contributions to prepared responses. Journal of Neurophysiology, 2019, 121, 1809-1821.	0.9	16
13	Startle and the StartReact Effect: Physiological Mechanisms. Journal of Clinical Neurophysiology, 2019, 36, 452-459.	0.9	36
14	A Timeline of Motor Preparatory State Prior to Response Initiation: Evidence from Startle. Neuroscience, 2019, 397, 80-93.	1.1	11
15	Subâ€ŧhreshold transcranial magnetic stimulation applied after the goâ€signal facilitates reaction time under control but not startle conditions. European Journal of Neuroscience, 2018, 47, 333-345.	1.2	5
16	Coactivation of response initiation processes with redundant signals. Neuroscience Letters, 2018, 675, 7-11.	1.0	3
17	Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules. Psychological Research, 2018, 82, 496-506.	1.0	3
18	Offline continuous theta burst stimulation over right inferior frontal gyrus and pre-supplementary motor area impairs inhibition during a go/no-go task. Neuropsychologia, 2017, 99, 360-367.	0.7	15

ANTHONY N CARLSEN

#	Article	IF	CITATIONS
19	Foreknowledge of an impending startling stimulus does not affect the proportion of startle reflexes or latency of StartReact responses. Experimental Brain Research, 2017, 235, 379-388.	0.7	4
20	Go-activation endures following the presentation of a stop-signal: evidence from startle. Journal of Neurophysiology, 2017, 117, 403-411.	0.9	2
21	Response preparation and execution during intentional bimanual pattern switching. Journal of Neurophysiology, 2017, 118, 1720-1731.	0.9	6
22	Intentional switches between coordination patterns are faster following anodal-tDCS applied over the supplementary motor area. Brain Stimulation, 2017, 10, 162-164.	0.7	9
23	Effector-independent reduction in choice reaction time following bi-hemispheric transcranial direct current stimulation over motor cortex. PLoS ONE, 2017, 12, e0172714.	1.1	9
24	Startle reveals decreased response preparatory activation during a stop-signal task. Journal of Neurophysiology, 2016, 116, 986-994.	0.9	3
25	Corticospinal excitability is reduced in a simple reaction time task requiring complex timing. Brain Research, 2016, 1642, 319-326.	1.1	7
26	Responses to startling acoustic stimuli indicate that movement-related activation is constant prior to action: aÂreplication with an alternate interpretation. Physiological Reports, 2015, 3, e12300.	0.7	27
27	A broadband acoustic stimulus is more likely than a pure tone to elicit a startle reflex and prepared movements. Physiological Reports, 2015, 3, e12509.	0.7	20
28	Responses to startling acoustic stimuli indicate that movement-related activation does not build up in anticipation of action. Journal of Neurophysiology, 2015, 113, 3453-3454.	0.9	2
29	Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. Journal of Neurophysiology, 2015, 113, 780-785.	0.9	26
30	Inhibition of motor-related activation during a simple reaction time task requiring visuomotor mental rotation Behavioral Neuroscience, 2015, 129, 160-169.	0.6	7
31	A startling acoustic stimulus interferes with upcoming motor preparation: Evidence for a startle refractory period. Acta Psychologica, 2015, 158, 36-42.	0.7	8
32	Neural processes mediating the preparation and release of focal motor output are suppressed or absent during imagined movement. Experimental Brain Research, 2015, 233, 1625-1637.	0.7	3
33	Degraded expression of learned feedforward control in movements released by startle. Experimental Brain Research, 2015, 233, 2291-2300.	0.7	7
34	Reduced motor preparation during dual-task performance: evidence from startle. Experimental Brain Research, 2015, 233, 2673-2683.	0.7	13
35	Startle activation is additive with voluntary cortical activation irrespective of stimulus modality. Neuroscience Letters, 2015, 606, 151-155.	1.0	11
36	Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system. Behavioural Brain Research, 2015, 279, 68-75.	1.2	40

ANTHONY N CARLSEN

#	Article	IF	CITATIONS
37	Do greater rates of body heat storage precede the accelerated reduction of self-paced exercise intensity in the heat?. European Journal of Applied Physiology, 2014, 114, 2399-2410.	1.2	13
38	Startle neural activity is additive with normal cortical initiation-related activation. Neuroscience Letters, 2014, 558, 164-168.	1.0	22
39	Self-controlled feedback is effective if it is based on the learnerââ,¬â"¢s performance: a replication and extension of Chiviacowsky and Wulf (2005). Frontiers in Psychology, 2014, 5, 1325.	1.1	42
40	The Time Course of Corticospinal Excitability during a Simple Reaction Time Task. PLoS ONE, 2014, 9, e113563.	1.1	27
41	Anodal tDCS over SMA decreases the probability of withholding an anticipated action. Behavioural Brain Research, 2013, 257, 208-214.	1.2	27
42	Motor preparation is delayed for both directly and indirectly cued movements during an anticipation-timing task. Brain Research, 2013, 1506, 44-57.	1.1	6
43	Using a startling acoustic stimulus to investigate underlying mechanisms of bradykinesia in Parkinson's disease. Neuropsychologia, 2013, 51, 392-399.	0.7	26
44	Evidence for a response preparation bottleneck during dual-task performance: Effect of a startling acoustic stimulus on the psychological refractory period. Acta Psychologica, 2013, 144, 481-487.	0.7	15
45	Pause time alters the preparation of two-component movements. Experimental Brain Research, 2013, 231, 85-96.	0.7	0
46	Startle reveals independent preparation and initiation of triphasic EMG burst components in targeted ballistic movements. Journal of Neurophysiology, 2013, 110, 2129-2139.	0.9	10
47	Subcortical motor circuit excitability during simple and choice reaction time Behavioral Neuroscience, 2012, 126, 499-503.	0.6	18
48	Investigation of stimulus–response compatibility using a startling acoustic stimulus. Brain and Cognition, 2012, 78, 1-6.	0.8	6
49	Preparation for voluntary movement in healthy and clinical populations: Evidence from startle. Clinical Neurophysiology, 2012, 123, 21-33.	0.7	98
50	Startle decreases reaction time to active inhibition. Experimental Brain Research, 2012, 217, 7-14.	0.7	10
51	Reaction time effects due to imperative stimulus modality are absent when a startle elicits a pre-programmed action. Neuroscience Letters, 2011, 500, 177-181.	1.0	11
52	Default motor preparation under conditions of response uncertainty. Experimental Brain Research, 2011, 215, 235-245.	0.7	14
53	Considerations for the use of a startling acoustic stimulus in studies of motor preparation in humans. Neuroscience and Biobehavioral Reviews, 2011, 35, 366-376.	2.9	115
54	Motor preparation is modulated by the resolution of the response timing information. Brain Research, 2010, 1322, 38-49.	1.1	57

ANTHONY N CARLSEN

#	Article	IF	CITATIONS
55	Response preparation changes during practice of an asynchronous bimanual movement. Experimental Brain Research, 2009, 195, 383-392.	0.7	24
56	Precues enable multiple response preprogramming: Evidence from startle. Psychophysiology, 2009, 46, 241-251.	1.2	21
57	Differential Effects of Startle on Reaction Time for Finger and Arm Movements. Journal of Neurophysiology, 2009, 101, 306-314.	0.9	64
58	Response preparation changes following practice of an asymmetrical bimanual movement. Experimental Brain Research, 2008, 190, 239-249.	0.7	19
59	Motor preparation in an anticipation-timing task. Experimental Brain Research, 2008, 190, 453-461.	0.7	22
60	Startle reveals an absence of advance motor programming in a Go/No-go task. Neuroscience Letters, 2008, 434, 61-65.	1.0	33
61	Perceptual processing time differences owing to visual field asymmetries. NeuroReport, 2007, 18, 1067-1070.	0.6	8
62	Startle produces early response latencies that are distinct from stimulus intensity effects. Experimental Brain Research, 2007, 176, 199-205.	0.7	118
63	Temporal uncertainty does not affect response latencies of movements produced during startle reactions. Experimental Brain Research, 2006, 171, 278-282.	0.7	25
64	Assessing vestibular contributions during changes in gait trajectory. NeuroReport, 2005, 16, 1097-1100.	0.6	25
65	Identifying visual–vestibular contributions during target-directed locomotion. Neuroscience Letters, 2005, 384, 217-221.	1.0	16
66	Prepared Movements Are Elicited Early by Startle. Journal of Motor Behavior, 2004, 36, 253-264.	0.5	159
67	Can prepared responses be stored subcortically?. Experimental Brain Research, 2004, 159, 301-309.	0.7	153
68	Startle response is dishabituated during a reaction time task. Experimental Brain Research, 2003, 152, 510-518.	0.7	60
69	Relative contributions of visual and vestibular information on the trajectory of human gait. Experimental Brain Research, 2003, 153, 113-117.	0.7	38
70	Altered Triggering of a Prepared Movement by a Startling Stimulus. Journal of Neurophysiology, 2003, 89, 1857-1863.	0.9	30
71	Transcranial Direct Current Stimulation Over Motor Areas Improves Reaction Time in Parkinson's Disease. Frontiers in Neurology, 0, 13, .	1.1	2