
Nadezhda A Besedina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4860356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guiding graphene derivatization for covalent immobilization of aptamers. Carbon, 2022, 196, 264-279.	10.3	7
2	Persistent red blood cells retain their ability to move in microcapillaries under high levels of oxidative stress. Communications Biology, 2022, 5, .	4.4	6
3	Gold nanoparticle-carbon nanotube multilayers on silica microspheres: Optoacoustic-Raman enhancement and potential biomedical applications. Materials Science and Engineering C, 2021, 120, 111736.	7.3	16
4	Red blood cell transport velocity in microchannels indicates the growth of abnormal subpopulation under oxidative stress. FASEB Journal, 2021, 35, .	0.5	0
5	Microfluidic Characterization of Red Blood Cells Microcirculation under Oxidative Stress. Cells, 2021, 10, 3552.	4.1	6
6	Graphene oxide conversion into controllably carboxylated graphene layers via photoreduction process in the inert atmosphere. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 221-225.	2.1	16
7	Thin carbon films: Correlation between morphology and field-emission capability. Diamond and Related Materials, 2020, 105, 107805.	3.9	7
8	From graphene oxide towards aminated graphene: facile synthesis, its structure and electronic properties. Scientific Reports, 2020, 10, 6902.	3.3	114
9	Peculiarities of inelastic scattering of light by \${mathrm{Nd}}_{1-x}{mathrm{Bi}}_{x}{mathrm{FeO}}_{3}\$ nanoclusters. Nano Express, 2020, 1, 010064.	2.4	2
10	Investigation of Erythrocyte Transport through Microchannels After the Induction of Oxidative Stress with Tert-Butyl Peroxide. Technical Physics, 2020, 65, 1491-1496.	0.7	2
11	Study of nanocarbon thin-film field-electron emitters by Raman spectroscopy. Journal of Physics: Conference Series, 2019, 1236, 012005.	0.4	1
12	Ultracentrifugation for ultrafine nanodiamond fractionation. Superlattices and Microstructures, 2018, 113, 204-212.	3.1	15
13	Nucleation and Growth Modeling of Protein Crystals in Capillaries. Semiconductors, 2018, 52, 2132-2134.	0.5	Ο
14	Artificial neural network prediction of lysozyme solubility for protein crystallization. Journal of Physics: Conference Series, 2018, 1124, 031017.	0.4	0
15	Kinetic Model of the Formation of Protein Crystals in Capillaries by Counterdiffusion. Technical Physics Letters, 2018, 44, 502-504.	0.7	1
16	Facile reduction of graphene oxide suspensions and films using glass wafers. Scientific Reports, 2018, 8, 14154.	3.3	110
17	Structure and Properties of Thin Graphite-Like Films Produced by Magnetron-Assisted Sputtering. Semiconductors, 2018, 52, 914-920.	0.5	9
18	Thermodynamic Analysis of the Conformational Stability of a Single-Domain Therapeutic Antibody. Technical Physics Letters, 2017, 43, 1088-1091.	0.7	4

#	Article	IF	CITATIONS
19	Sonication assisted advanced oxidation process: hybrid method for deagglomeration of detonation nanodiamond particles. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-7.	2.1	3