Stuart J. Conway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4860308/publications.pdf

Version: 2024-02-01

90 papers 4,357 citations

32 h-index 110387 64 g-index

114 all docs

114 docs citations

times ranked

114

5992 citing authors

#	Article	IF	CITATIONS
1	Increasing Diversity in Admissions to Postgraduate Study. Journal of Medicinal Chemistry, 2022, 65, 5867-5869.	6.4	O
2	Fragment-Based Identification of Ligands for Bromodomain-Containing Factor 3 of <i>Trypanosoma cruzi</i> . ACS Infectious Diseases, 2021, 7, 2238-2249.	3.8	14
3	Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nature Chemistry, 2021, 13, 540-548.	13.6	42
4	Bioactivation of Isoxazole-Containing Bromodomain and Extra-Terminal Domain (BET) Inhibitors. Metabolites, 2021, 11, 390.	2.9	3
5	Simplifying Submission Requirements for the Journal of Medicinal Chemistry. Journal of Medicinal Chemistry, 2021, 64, 7877-7878.	6.4	0
6	Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. Journal of Medicinal Chemistry, 2021, 64, 10102-10123.	6.4	17
7	Zapâ€Pano: a Photocaged Prodrug of the KDAC Inhibitor Panobinostat. ChemMedChem, 2021, 16, 3691-3700.	3.2	6
8	Development and pre-clinical testing of a novel hypoxia-activated KDAC inhibitor. Cell Chemical Biology, 2021, 28, 1258-1270.e13.	5. 2	21
9	Development of isotope-enriched phosphatidylinositol-4- and 5-phosphate cellular mass spectrometry probes. Chemical Science, 2021, 12, 2549-2557.	7.4	4
10	Celebrating the Medicinal Chemistry of Gunda Georg and Shaomeng Wang. Journal of Medicinal Chemistry, 2021, 64, 17541-17544.	6.4	0
11	Pharmacological Inhibition of ATR Can Block Autophagy through an ATR-Independent Mechanism. IScience, 2020, 23, 101668.	4.1	5
12	Epigenetics 2.0: Special Issue on Epigeneticsâ€"Call for Papers. Journal of Medicinal Chemistry, 2020, 63, 12129-12130.	6.4	1
13	A Singleâ€Stranded DNAâ€Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. Advanced Science, 2020, 7, 2001970.	11.2	30
14	Selective Fragments for the CREBBP Bromodomain Identified from an Encoded Selfâ€assembly Chemical Library. ChemMedChem, 2020, 15, 1752-1756.	3.2	15
15	PPIs as therapeutic targets for anticancer drug discovery: the case study of MDM2 and BET bromodomain inhibitors., 2020,, 267-288.		1
16	Bifunctional Molecules beyond PROTACs. Journal of Medicinal Chemistry, 2020, 63, 2802-2806.	6.4	15
17	Hypoxia-activated pro-drugs of the KDAC inhibitor vorinostat (SAHA). Tetrahedron, 2020, 76, 131170.	1.9	14
18	Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nature Communications, 2019, 10, 3430.	12.8	93

#	Article	IF	Citations
19	Interaction of the Mechanosensitive Channel, MscS, with the Membrane Bilayer through Lipid Intercalation into Grooves and Pockets. Journal of Molecular Biology, 2019, 431, 3339-3352.	4.2	24
20	Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angewandte Chemie - International Edition, 2019, 58, 17930-17952.	13.8	31
21	Chemische Epigenetik: der Einfluss chemischer und chemoâ€biologischer Techniken auf die Zielstrukturâ€Validierung von Bromodomäen. Angewandte Chemie, 2019, 131, 18096-18120.	2.0	3
22	Hypoxia-Activated, Small-Molecule-Induced Gene Expression. ACS Chemical Biology, 2018, 13, 3354-3360.	3.4	11
23	High-density functional-RNA arrays as a versatile platform for studying RNA-based interactions. Nucleic Acids Research, 2018, 46, e86-e86.	14.5	11
24	BET bromodomain ligands: Probing the WPF shelf to improve BRD4 bromodomain affinity and metabolic stability. Bioorganic and Medicinal Chemistry, 2018, 26, 2937-2957.	3.0	19
25	Small molecules as tools to study the chemical epigenetics of lysine acetylation. Current Opinion in Chemical Biology, 2018, 45, 166-178.	6.1	35
26	CYP450 Enzymes Effect Oxygen-Dependent Reduction of Azide-Based Fluorogenic Dyes. ACS Central Science, 2017, 3, 20-30.	11.3	53
27	Pyocyanin degradation by a tautomerizing demethylase inhibits <i>Pseudomonas aeruginosa</i> biofilms. Science, 2017, 355, 170-173.	12.6	53
28	Clinical Advances of Hypoxia-Activated Prodrugs in Combination With Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 98, 1183-1196.	0.8	109
29	Adenosine Monophosphate Binding Stabilizes the KTN Domain of the <i>Shewanella denitrificans</i> Kef Potassium Efflux System. Biochemistry, 2017, 56, 4219-4234.	2.5	9
30	Isoxazoleâ€Derived Amino Acids are Bromodomainâ€Binding Acetylâ€Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3. Angewandte Chemie, 2016, 128, 8493-8497.	2.0	7
31	Isoxazoleâ€Derived Amino Acids are Bromodomainâ€Binding Acetylâ€Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3. Angewandte Chemie - International Edition, 2016, 55, 8353-8357.	13.8	25
32	The photochemical thiol–ene reaction as a versatile method for the synthesis of glutathione S-conjugates targeting the bacterial potassium efflux system Kef. Organic Chemistry Frontiers, 2016, 3, 439-446.	4.5	14
33	Epigenetics: Novel Therapeutics Targeting Epigenetics. Journal of Medicinal Chemistry, 2016, 59, 1247-1248.	6.4	20
34	Design, synthesis and evaluation of molecularly targeted hypoxia-activated prodrugs. Nature Protocols, 2016, 11, 781-794.	12.0	59
35	Quantitative hopanoid analysis enables robust pattern detection and comparison between laboratories. Geobiology, 2015, 13, 391-407.	2.4	22
36	Epigenetics: Novel Therapeutics Targeting Epigenetics. Journal of Medicinal Chemistry, 2015, 58, 523-524.	6.4	20

#	Article	IF	CITATIONS
37	Small Molecule Inhibitors of Bromodomain–Acetyl-lysine Interactions. ACS Chemical Biology, 2015, 10, 22-39.	3.4	156
38	Emerging Epigenetic Therapies—Bromodomain Ligands. , 2015, , 495-524.		1
39	Efficient synthesis of 2-nitroimidazole derivatives and the bioreductive clinical candidate Evofosfamide (TH-302). Organic Chemistry Frontiers, 2015, 2, 1026-1029.	4.5	19
40	Synthesis of Highly Water-Soluble Adamantyl Phosphoinositide Derivatives. Australian Journal of Chemistry, 2015, 68, 543.	0.9	1
41	Phenotypic screening and fragment-based approaches to the discovery of small-molecule bromodomain ligands. Future Medicinal Chemistry, 2014, 6, 179-204.	2.3	29
42	A Series of Potent CREBBP Bromodomain Ligands Reveals an Inducedâ€Fit Pocket Stabilized by a Cation–̀ Interaction. Angewandte Chemie - International Edition, 2014, 53, 6126-6130.	13.8	108
43	Discovery and Optimization of Small-Molecule Ligands for the CBP/p300 Bromodomains. Journal of the American Chemical Society, 2014, 136, 9308-9319.	13.7	244
44	Understanding the Structural Requirements for Activators of the Kef Bacterial Potassium Efflux System. Biochemistry, 2014, 53, 1982-1992.	2.5	25
45	The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains. MedChemComm, 2013, 4, 140-144.	3.4	63
46	CH-01 is a Hypoxia-Activated Prodrug That Sensitizes Cells to Hypoxia/Reoxygenation Through Inhibition of Chk1 and Aurora A. ACS Chemical Biology, 2013, 8, 1451-1459.	3.4	53
47	Optimization of 3,5-Dimethylisoxazole Derivatives as Potent Bromodomain Ligands. Journal of Medicinal Chemistry, 2013, 56, 3217-3227.	6.4	125
48	Wavelength-orthogonal photolysis of neurotransmittersin vitro. Chemical Communications, 2012, 48, 657-659.	4.1	32
49	Progress in the Development and Application of Small Molecule Inhibitors of Bromodomain–Acetyl-lysine Interactions. Journal of Medicinal Chemistry, 2012, 55, 9393-9413.	6.4	160
50	NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing. Current Biology, 2012, 22, 2331-2337.	3.9	121
51	Bromodomains: Are Readers Right for Epigenetic Therapy?. ACS Medicinal Chemistry Letters, 2012, 3, 691-694.	2.8	29
52	The use of phosphate bioisosteres in medicinal chemistry and chemical biology. MedChemComm, 2012, 3, 735.	3.4	140
53	Development of inositol-based antagonists for the $<$ scp $>$ d $<$ /scp $>$ -myo-inositol 1,4,5-trisphosphate receptor. Chemical Communications, 2011, 47, 242-244.	4.1	22
54	3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands. Journal of Medicinal Chemistry, 2011, 54, 6761-6770.	6.4	204

#	Article	lF	CITATIONS
55	Mitochondrial β-amyloid in Alzheimer's disease. Biochemical Society Transactions, 2011, 39, 868-873.	3.4	32
56	KefF, the Regulatory Subunit of the Potassium Efflux System KefC, Shows Quinone Oxidoreductase Activity. Journal of Bacteriology, 2011, 193, 4925-4932.	2.2	16
57	Mechanism of ligand-gated potassium efflux in bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19784-19789.	7.1	73
58	The consequences of mitochondrial amyloid \hat{l}^2 -peptide in Alzheimer's disease. Biochemical Journal, 2010, 426, 255-270.	3.7	67
59	(â^')-CHANA, a Fluorogenic Probe for Detecting Amyloid Binding Alcohol Dehydrogenase HSD10 Activity in Living Cells. ACS Chemical Biology, 2010, 5, 1105-1114.	3.4	16
60	Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes. Organic and Biomolecular Chemistry, 2010, 8, 66-76.	2.8	56
61	Thieme Chemistry Journal Awardees - Where are They Now? Synthesis of the Marine Glycolipid Dioctadecanoyl Discoside. Synlett, 2009, 2009, 3099-3102.	1.8	3
62	Increased InsP ₃ Rs in the junctional sarcoplasmic reticulum augment Ca ²⁺ transients and arrhythmias associated with cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11406-11411.	7.1	114
63	A type 2 Ferrier rearrangement-based synthesis of d-myo-inositol 1,4,5-trisphosphate. Tetrahedron: Asymmetry, 2009, 20, 857-866.	1.8	10
64	A synthesis of dioctanoyl phosphatidylinositol. Tetrahedron: Asymmetry, 2009, 20, 2809-2813.	1.8	6
65	Caged AG10: new tools for spatially predefined mitochondrial uncoupling. Molecular BioSystems, 2009, 5, 450.	2.9	10
66	Synthesis and biological evaluation of a novel cardiolipin affinity matrix. Organic and Biomolecular Chemistry, 2009, 7, 3691.	2.8	12
67	Synthesis, photolysis studies and in vitro photorelease of caged TRPV1 agonists and antagonists. Organic and Biomolecular Chemistry, 2009, 7, 4695.	2.8	10
68	Facile one-pot synthesis of 5-substituted hydantoins. Organic and Biomolecular Chemistry, 2008, 6, 988.	2.8	41
69	TRPing the switch on pain: an introduction to the chemistry and biology of capsaicin and TRPV1. Chemical Society Reviews, 2008, 37, 1530.	38.1	47
70	Purinergic Receptor-Stimulated IP3-Mediated Ca2+ Release Enhances Neuroprotection by Increasing Astrocyte Mitochondrial Metabolism during Aging. Journal of Neuroscience, 2007, 27, 6510-6520.	3.6	56
71	The Proapoptotic Factors Bax and Bak Regulate T Cell Proliferation through Control of Endoplasmic Reticulum Ca2+ Homeostasis. Immunity, 2007, 27, 268-280.	14.3	92
72	Biology-enabling inositol phosphates, phosphatidylinositol phosphates and derivatives. Natural Product Reports, 2007, 24, 687.	10.3	65

#	Article	IF	CITATIONS
73	Synthesis and Biological Action of Novel 4-Position-Modified Derivatives ofd-myo-Inositol 1,4,5-Trisphosphate. Journal of Organic Chemistry, 2007, 72, 5647-5659.	3.2	17
74	Defective chemoattractant-induced calcium signalling in S100A9 null neutrophils. Cell Calcium, 2007, 41, 107-121.	2.4	28
75	Temporal changes in atrial EC-coupling during prolonged stimulation with endothelin-1. Cell Calcium, 2007, 42, 489-501.	2.4	28
76	The Synthesis of Membrane Permeant Derivatives of myo-Inositol 1,4,5-Trisphosphate. Australian Journal of Chemistry, 2006, 59, 887.	0.9	12
77	In vitro photo-release of a TRPV1 agonist. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 208-212.	2.2	19
78	Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. Journal of Cell Science, 2006, 119, 3363-3375.	2.0	109
79	The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. Journal of Cell Science, 2004, 117, 6327-6337.	2.0	137
80	Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. Journal of Cell Biology, 2004, 166, 193-203.	5.2	366
81	Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO Journal, 2004, 23, 312-321.	7.8	149
82	Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate). Biochemical Journal, 2004, 378, 275-280.	3.7	21
83	Inositol 1,4,5-trisphosphate receptors in the heart. Biological Research, 2004, 37, 553-7.	3.4	24
84	2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium, 2003, 34, 97-108.	2.4	248
85	Phenylglycine derivatives as antagonists of group III metabotropic glutamate receptors expressed on neonatal rat primary afferent terminals. British Journal of Pharmacology, 2003, 139, 1523-1531.	5.4	9
86	Co-incident signalling between $\hat{l}\frac{1}{4}$ -opioid and M3 muscarinic receptors at the level of Ca2+ release from intracellular stores: lack of evidence for Ins(1,4,5)P3 receptor sensitization. Biochemical Journal, 2003, 375, 713-720.	3.7	18
87	Synthesis and biological evaluation of phospholane and dihydrophosphole analogues of the glutamate receptor agonist AP4Electronic supplementry information (ESI) available: mode of epoxide ring-opening and experimental data for 2 and 3. See http://www.rsc.org/suppdata/p1/b2/b204891d/. lournal of the Chemical Society, Perkin Transactions 1, 2002, , 1625-1627.	1.3	5
88	Distinct Intracellular Calcium Transients in Neurites and Somata Integrate Neuronal Signals. Journal of Neuroscience, 2002, 22, 5344-5353.	3.6	57
89	Synthesis of phenylglycine derivatives as potent and selective antagonists of group III metabotropic glutamate receptors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 777-780.	2.2	24
90	Welcome to ACS Bio & Med Chem Au. ACS Bio & Med Chem Au, O, , .	3.7	0