Victor Gromov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4860021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine structure formation in rails under ultra long-term operation. Materials Letters, 2022, 309, 131378.	1.3	6
2	Physical nature of rail surface hardening during long-term operation. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 64, 886-894.	0.1	0
3	Investigation of Co-Cr-Fe-Mn-Ni Non-Equiatomic High-Entropy Alloy Fabricated by Wire Arc Additive Manufacturing. Metals, 2022, 12, 197.	1.0	14
4	Microstructure and mechanical properties of non-equiatomic Co25.4Cr15Fe37.9Mn3.5Ni16.8Si1.4 high-entropy alloy produced by wire-arc additive manufacturing. Materials Letters, 2022, 312, 131675.	1.3	14
5	Structure and Properties of Ag-Ni-N Coating Formed on Copper by Electroexplosive Spraying Combined with Pulsed Electron Beam Irradiation and Nitriding. Physical Mesomechanics, 2022, 25, 18-25.	1.0	3
6	Elemental and phase composition of electric arc coating formed with a flux-cored wire of Fe – C – Si – Mn – Сr – Ni – Mo system. Izvo 120-126.	es tiy a Vys	sh i kh Ucheb
7	Transformation of structural-phase states in rail head at extremely long-term operation. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 65, 209-215.	0.1	0
8	Effect of carbon-fluorine additive to flux on the structure, defective substructure and fracture surface of electric arc surfacing of low-carbon wire. Journal of Materials Research and Technology, 2022, 18, 2104-2111.	2.6	1
9	Gradients of Structure, Phase Composition, and Dislocation Substructure of Rails under the Ultra Long-Term Operation. Izvestiya of Altai State University, 2022, , 44-50.	0.1	2
10	Physical nature of rails strengthening in extremely long-term operation. AIP Conference Proceedings, 2022, , .	0.3	0
11	Structure, Dislocation Hardening, and Fracture Surface of an Arc Sprayed Coating Made of a Low-Carbon Steel. Russian Metallurgy (Metally), 2022, 2022, 239-244.	0.1	1
12	Structure and Properties of Electroerosion-Resistant WN–WC–W2C0.84–Ag Coatings Fabricated by a Combined Method. Russian Metallurgy (Metally), 2022, 2022, 316-319.	0.1	1
13	Structural-Phase State and Fracture of a Low-Carbon Steel Coating. Russian Metallurgy (Metally), 2022, 2022, 320-324.	0.1	0
14	Effect of high-current pulsed electron beam treatment on defect substructure of the high-entropy alloy of Co – Cr – Fe – Mn – Ni system. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 65, 254-260.	0.1	0
15	Structure and Surface Properties of Steel 45 after Electroexplosive Boron-Copper Plating and Electron-Beam Processing. Journal of Surface Investigation, 2022, 16, 285-289.	0.1	0
16	Structure–Phase Transformations in the Modified Surface of Al-20%Si Alloy Subjected to Two-Stage Treatment. Lubricants, 2022, 10, 133.	1.2	0
17	The comparative analysis of change in the structure and properties of Al–Si system alloys exposed to electroexplosive alloying. , 2022, , 113-120.		0
18	Fractography of fracture surface of CrMnFeCoNi high-entropy alloy after electron-beam processing. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 65, 427-433.	0.1	2

#	Article	IF	CITATIONS
19	Structure and properties of the CrMnFeCoNi high-entropy alloy irradiated with a pulsed electron beam. Journal of Materials Research and Technology, 2022, 19, 4258-4269.	2.6	10
20	Modifying of Titanium VT6 Alloy Surface by Electrical Explosion Alloying. , 2021, , 123-136.		0
21	Fractography of Silumin Surface Fractured in High-Cycle Fatigue Tests. , 2021, , 91-108.		Ο
22	Variation in the yield point of differentially quenched rails at severe plastic deformation. Letters on Materials, 2021, 11, 100-103.	0.2	0
23	Special Analysis Aspects of Modified Light Alloys. , 2021, , 53-73.		0
24	Structure and Properties of As-Cast Silumin and Processed by Intense Pulsed Electron Beam. , 2021, , 75-90.		0
25	Surface Boriding and Titanization Stainless Steel by Integrated Processes. Journal of Surface Investigation, 2021, 15, 200-209.	0.1	3
26	Deformation behavior of high-entropy alloy system Al – Co – Cr – Fe – Ni achieved by wire-arc additive manufacturing. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 68-74.	0.1	1
27	Evolution of the Fine Structure and Properties of Rail Metal during Long-Term Operation. Physical Mesomechanics, 2021, 24, 202-210.	1.0	2
28	Deformation strengthening mechanisms of rails in extremely long-term operation. Journal of Materials Research and Technology, 2021, 11, 710-718.	2.6	8
29	Physical Nature of Strengthening Mechanisms During Extremely Long-Term Operation of Rails. Izvestiya of Altai State University, 2021, , 33-39.	0.1	2
30	Electroexplosive hafnium coating on titanium implant modified by nitrogen ions and electron beam processing. Surface and Coatings Technology, 2021, 409, 126895.	2.2	6
31	Increase of alloys functional properties by electronic beam processing. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 129-134.	0.1	0
32	Structure of Differentially Hardened Rails after Severe Plastic Deformation. Russian Metallurgy (Metally), 2021, 2021, 426-429.	0.1	3
33	Structure, Phase Composition and Properties of Rail Running Surface at Extremely Long Operation Time. Russian Physics Journal, 2021, 64, 82-88.	0.2	0
34	ÐįТÐУКТУÐЕÐ⁻ ÐįВОЙÐįТВЕПОКÐЫТÐ⁻Ð⁻ Ni-C-Ag-N, ÐįÐ Ð žÐĐœĐ⁻ÐОВÐĐĐОГО Đŀ	D•10000+D'	'Ð~КОМE
35	High-entropy alloys: Structure, mechanical properties, deformation mechanisms and application. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 249-258.	0.1	11

Microstructural and mechanical characterisation of non-equiatomic Al_{2.1}Co_{0.3}Cr_{0.5}FeNi_{2.1}high-entropy alloy fabricated via wire-arc additive manufacturing. Philosophical Magazine Letters, 2021, 101, 353-359. 36 0.5 14

#	Article	IF	CITATIONS
37	Ͽ·ϿϳϿϳϿ;ϴͽ·Ͽ;ϿϿϿϿϿϿ·Ͽ• ϿϳϿ¢ϿϿέϿέϿέϿέϿͼϿϼϿϿϿͼϿϳϿʹϿϳϿʹϿϫϿϳϿͼϿϳϿͼϿϳϿͼϿϳϿͼϿͼϿϳϿͼϿͼϿͼϿͼ	"Đ ž.Ð ¡ÐŸÐ	> ₽ ₽ ` ₽•AlCo(
38	ÐÐ ÐÐ •КТ КÐ⁻ÐЕТÐ⁻ЧЕСКОЙ ÐΫЛÐСТÐ⁻ЧÐОСТÐ⁻ Ð⁻ ЕГО ÐΫÐÐ⁻МЕÐЕÐÐ⁻Е ÐΫÐÐ)~ Ð.Ÿ Ð>ÐÐ-	ⅆⅆ⅁∙⅁⅁⅁
39	Research on the structure of Al2.1Co0.3Cr0.5FeNi2.1 high-entropy alloy at submicro- and nano-scale levels. Materials Letters, 2021, 294, 129717.	1.3	20
40	Modification of high-entropy alloy AlCoCrFeNi by electron beam treatment. Journal of Materials Research and Technology, 2021, 13, 787-797.	2.6	14
41	Model of the object of temperature control by electrostimulating action parameters. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 435-441.	0.1	0
42	Phase Composition, Structure, and Properties of an Electroexplosive Coating on a WC–Ag–N System after Electron-Beam Processing and Nitriding. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 810-817.	0.1	0
43	Evolution of Structure in AlCoCrFeNi High-Entropy Alloy Irradiated by a Pulsed Electron Beam. Metals, 2021, 11, 1228.	1.0	18
44	The mechanism of formation of surface micro- and nanostructures in the AlCoCrFeNi high-entropy alloy during electron-beam treatment. Letters on Materials, 2021, 11, 309-314.	0.2	3
45	Generation of increased mechanical properties of Cantor highÂentropy alloy. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 599-605.	0.1	8
46	Modifying of Structure-Phase States and Properties of Metals by Concentrated Energy Flows. , 2021, , 1-52.		0
47	Model of Temperature Control by Electrically Stimulating Action Parameters. Steel in Translation, 2021, 51, 374-378.	0.1	0
48	Microhardness and Structure Distribution over the Layer of a High-Hardness Heat-Resitant Alloy Formed by Multi-Layer Plasma Surfacing in a Nitrogen Medium. Russian Physics Journal, 2021, 64, 1254-1260.	0.2	0
49	Application of high-entropy alloys. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 747-754.	0.1	1
50	Strengthening Mechanisms of Rail Metal during Continuous Operation. Inorganic Materials: Applied Research, 2021, 12, 1540-1546.	0.1	0
51	Application of High-Entropy Alloys. Steel in Translation, 2021, 51, 700-704.	0.1	1
52	Structural Phase Variations in High-Entropy Alloy upon Pulsed Electron Beam Irradiation. Steel in Translation, 2021, 51, 788-794.	0.1	1
53	Structural phase variations in high-entropy alloy at irradiation by pulsed electron beam. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 846-854.	0.1	0

⁵⁴ Physical Nature of Rail Surface Hardening during Long-Term Operation. Steel in Translation, 2021, 51, 0.1 0

#	Article	IF	CITATIONS
55	Wave instability on the interface coating/substrate material under heterogeneous plasma flows. Journal of Materials Research and Technology, 2020, 9, 539-550.	2.6	11
56	Fatigue-Induced Evolution of AISI 310S Steel Microstructure after Electron Beam Treatment. Materials, 2020, 13, 4567.	1.3	14
57	Liquid-Phase Boriding of High-Chromium Steel. Steel in Translation, 2020, 50, 452-459.	0.1	4
58	Mechanism of Silicon Plate Decay in Aluminum Matrix under Electron Beam Effect. Key Engineering Materials, 2020, 839, 32-36.	0.4	0
59	The Role of Lattice Curvature in Structural Degradation of the Metal Surface Layer of a Rail under Long-term Operation. Doklady Physics, 2020, 65, 376-378.	0.2	6
60	Gradients in rails at long-term operation. IOP Conference Series: Materials Science and Engineering, 2020, 971, 052044.	0.3	0
61	Electromechanical installation based on a powerful current pulse generator for materials treatment. IOP Conference Series: Materials Science and Engineering, 2020, 866, 012051.	0.3	Ο
62	Boron electroexplosive alloying of austenite steel. IOP Conference Series: Materials Science and Engineering, 2020, 866, 012052.	0.3	0
63	Structure and properties of differentially hardened 100-m rails after long-term operation. IOP Conference Series: Materials Science and Engineering, 2020, 866, 012053.	0.3	Ο
64	Formation Mechanism of Micro- and Nanocrystalline Surface Layers in Titanium and Aluminum Alloys in Electron Beam Irradiation. Metals, 2020, 10, 1399.	1.0	16
65	Structure and microhardness of bioinert coatings of Ti-Ta-N system. IOP Conference Series: Materials Science and Engineering, 2020, 866, 012050.	0.3	Ο
66	Modification of Al-10Si-2Cu alloy surface by intensive pulsed electron beam. Journal of Materials Research and Technology, 2020, 9, 5591-5598.	2.6	13
67	Changes in surface structure and mechanical characteristics of Al–5Âwt%Si alloy after irradiation by electron beam. Materials Letters, 2020, 275, 128105.	1.3	13
68	Effect of Electron-Beam Treatment on the Structure of Commercial-Purity Titanium Subjected to Fatigue Failure. Russian Metallurgy (Metally), 2020, 2020, 401-407.	0.1	0
69	Structural phase states and properties of rails after long-term operation. Materials Letters, 2020, 268, 127499.	1.3	17
70	The Structural Formation in Differentially-Hardened 100-Meter-Long Rails during Long-Term Operation. Steel in Translation, 2020, 50, 77-83.	0.1	3
71	Bioinert coatings of Ti-Ta-N for medical implants obtained by electric explosion spraying and subsequent electron-ion-plasma modification. Materials Research Express, 2020, 7, 125004.	0.8	2
72	Formation of Fine Surface of Long Rails on Differentiated Hardening. Journal of Surface Investigation, 2020, 14, 1187-1190.	0.1	1

#	Article	IF	CITATIONS
73	Effect of Electron-Plasma Treatment on the Microstructure of Al-11wt%Si Alloy. Materials Research, 2020, 23, .	0.6	3
74	Development of the structure of differentially hardened 100 m rails during their long operation. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2020, 63, 108-115.	0.1	7
75	Structure and properties of rails after extremely long-term operation. Voprosy Materialovedeniya, 2020, , 30-39.	0.0	3
76	Formation of Gradient Structure in Rails at Long-Term Operation. Materials Research, 2020, 23, .	0.6	1
77	High power current pulse generator based on reversible thyristor converter. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2020, 62, 964-971.	0.1	2
78	Liquid-phase boriding of high-chromium steel. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2020, 63, 539-547.	0.1	0
79	Model of nanostructural layers formation at long-term operation of rails. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2020, 63, 699-706.	0.1	1
80	Hardening mechanisms for rails metal during long-term operation. Voprosy Materialovedeniya, 2020, , 17-28.	0.0	0
81	Model of Nanostructural Layer Formation during Long-Term Operation of Rails. Steel in Translation, 2020, 50, 665-671.	0.1	0
82	Structure and Properties of Electro-Explosive TiC–Ni–Mo Coatings of Die Steel after Electron-Beam Treatment. Inorganic Materials: Applied Research, 2019, 10, 606-615.	0.1	1
83	Formation of Gradient Structure–Phase States in the Surface Layers of 100-m Differentially Quenched Rails. Russian Metallurgy (Metally), 2019, 2019, 710-715.	0.1	0
84	Increase in Wear Resistance of the Surface Layers of AK10M2N Silumin at Electron-Beam Treatment. Inorganic Materials: Applied Research, 2019, 10, 622-628.	0.1	2
85	Modification of surface layer of hypoeutectic silumin by electroexplosion alloying followed by electron beam processing. Materials Letters, 2019, 253, 55-58.	1.3	11
86	Improvement of copper alloy properties in electro-explosive spraying of ZnO-Ag coatings resistant to electrical erosion. Journal of Materials Research and Technology, 2019, 8, 5515-5523.	2.6	25
87	Effect of electron-plasma alloying on structure and mechanical properties of Al-Si alloy. Applied Surface Science, 2019, 498, 143767.	3.1	29
88	Effect of the Density of Electron Beam Energy on the Structure and Mechanical Characteristics of Surface Layers of Hypoeutectic Silumin. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1282-1288.	0.1	1
89	Formation and Evolution of Structure and Phase Composition of Hypoeutectoid Silumin on Electron Beam Processing. Journal of Surface Investigation, 2019, 13, 809-813.	0.1	3
90	Microstructure and micro-hardness behavior of Ti–Y2O3 –Al–Si composite coatings prepared in electron-plasma alloying. Materials Characterization, 2019, 158, 109934.	1.9	4

#	Article	IF	CITATIONS
91	Disintegration mechanism of second phase particles under electron beams. Materials Research Express, 2019, 6, 106556.	0.8	2
92	Structural-Phase State and the Properties of Silumin after Electron-Beam Surface Treatment. Russian Metallurgy (Metally), 2019, 2019, 398-402.	0.1	4
93	Microstructure and mechanical properties of doped and electron-beam treated surface of hypereutectic Al-11.1%Si alloy. Journal of Materials Research and Technology, 2019, 8, 3835-3842.	2.6	15
94	Titanium-zirconium coatings formed on the titanium implant surface by the electroexplosive method. Materials Letters, 2019, 242, 79-82.	1.3	12
95	Effect of electron-beam processing on structure of electroexplosive electroerosion resistant coatings of CuO-Ag system. Materials Research Express, 2019, 6, 085077.	0.8	6
96	Evolution of structure-phase states of hypoeutectic silumin irradiated by intensive pulse electron beams. Materials Research Express, 2019, 6, 076574.	0.8	2
97	Structural and phase changes under electropulse treatment of fatigue-loaded titanium alloy VT1-0. Journal of Materials Research and Technology, 2019, 8, 1300-1307.	2.6	36
98	Thermocapillary model of formation of nanostructures on the surface irradiated by low-energy high-current electron beams. Materials Research Express, 2019, 6, 076551.	0.8	3
99	Structure and electrical erosion resistance of an electro-explosive coating of the CuO–Ag system. Materials Research Express, 2019, 6, 055042.	0.8	11
100	Nanostructurisation of hypoeutectic silumin by electroexplosion alloying and subsequent electron beam processing. International Journal of Nanotechnology, 2019, 16, 619.	0.1	2
101	Phase Composition, Structure, and Wear Resistance of Electric-Explosive CuO–Ag System Coatings after Electron Beam Processing. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1270-1274.	0.1	3
102	Wear Resistance of the Surface Layers in Silumin after Electron-Beam Treatment. Russian Metallurgy (Metally), 2019, 2019, 981-985.	0.1	1
103	Structural Phase State of Surface Alloyed Y2O3 Silumin After Electron beam Processing. Journal of Surface Investigation, 2019, 13, 1343-1349.	0.1	2
104	Structure and properties of the electromagnetic starter's contacts with the electro-explosive CuO-Ag coating. Journal of Physics: Conference Series, 2019, 1347, 012123.	0.3	0
105	Nanostructure formation of hypoeutectic silumin by electronion-plasma methods. Journal of Physics: Conference Series, 2019, 1393, 012091.	0.3	2
106	Microdiffraction analysis of structure of silumin's high-velocity cellular crystallization. Journal of Physics: Conference Series, 2019, 1393, 012114.	0.3	0
107	High-Power Current-Pulse Generator Based on a Reverse Thyristor Converter. Steel in Translation, 2019, 49, 848-853.	0.1	1
108	Effect of Electrolytic-Plasma Nitrocarburizing on the Structural and Phase State of Ferrite-Pearlitic Steels. Steel in Translation, 2019, 49, 671-677.	0.1	3

#	Article	IF	CITATIONS
109	Formation of Structure and Properties of Silumin on Electron-Beam Processing. Journal of Surface Investigation, 2019, 13, 1040-1044.	0.1	1
110	Structure and Electroerosion Resistance of the Ag–CuO Coating Prepared by Electroexplosive Sputtering on Copper Electrical Contacts. Russian Metallurgy (Metally), 2019, 2019, 1036-1039.	0.1	1
111	Effect of electron beam processing on structure of electroexplosion coating of ZnO-Ag system. IOP Conference Series: Materials Science and Engineering, 2019, 681, 012036.	0.3	0
112	The Structure and Properties of a Weld-Deposited Layer onto Steel Hardox 450 Using a Boron-Containing Wire. Steel in Translation, 2019, 49, 510-516.	0.1	0
113	Analysis of changes in structure and microhardness of Al–11Si–2Cu alloy after complex treatment. AIP Conference Proceedings, 2019, , .	0.3	0
114	Model of nanostructure formation in Al–Si alloy at electron beam treatment. Materials Research Express, 2019, 6, 026540.	0.8	17
115	Structure and properties of layer, surfaced on HARDOX 450 steel by boron containing wire. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2019, 62, 613-620.	0.1	Ο
116	INFLUENCE OF ELECTROLYTIC PLASMA CARBONITRIDING ON STRUCTURAL PHASE STATE OF FERRITIC-PEARLITIC STEELS. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2019, 62, 782-789.	0.1	1
117	Contributions of Various Mechanisms to the Hardening of Differentially Quenched Rails during Long-Term Operation. Russian Metallurgy (Metally), 2018, 2018, 985-989.	0.1	4
118	Gradient structure formation in the surface layer of AK10M2N silumin by electron beam treatment. AIP Conference Proceedings, 2018, , .	0.3	0
119	Structure of SnO ₂ -Ag coating formed on copper by electroexplosion method. Journal of Physics: Conference Series, 2018, 1115, 032079.	0.3	Ο
120	Structure of SnO2-Ag coating formed on copper by electroexplosion. IOP Conference Series: Materials Science and Engineering, 2018, 447, 012077.	0.3	0
121	Redistribution of Carbon Atoms in Differentially Quenched Rail on Prolonged Operation. Steel in Translation, 2018, 48, 352-356.	0.1	Ο
122	Electroexplosive electrical erosion resistant coatings of the Ag-W system used for electrical contacts of power mine equipment. IOP Conference Series: Earth and Environmental Science, 2018, 206, 012030.	0.2	0
123	Physical and technical fundamentals of technology used to increase the wear resistance of working surfaces of large volume excavator buckets. IOP Conference Series: Earth and Environmental Science, 2018, 206, 012029.	0.2	0
124	Automatic Control of Electrostimulated Drawing. Steel in Translation, 2018, 48, 495-500.	0.1	1
125	Evolution of the Structure and Properties of AK10M2N Silumin under Irradiation with a High-Intensity Pulsed Electron Beam. Inorganic Materials, 2018, 54, 1308-1314.	0.2	3
126	A study on changes in the properties of silumin surface layers modified by yttrium oxide. IOP Conference Series: Materials Science and Engineering, 2018, 411, 012023.	0.3	1

#	Article	IF	CITATIONS
127	AFM investigation of silumin structure modified by Al-Y2O3 coating using the method of electric explosive alloying. IOP Conference Series: Materials Science and Engineering, 2018, 411, 012056.	0.3	0
128	Study of the surface relief, structure and phase composition of the silumin composite layer obtained by the method of electric explosion alloying by Al-Y2O3 system. Journal of Physics: Conference Series, 2018, 1115, 032021.	0.3	4
129	Hardware provision of electrostimulated wire drawing. Journal of Physics: Conference Series, 2018, 1115, 022030.	0.3	0
130	Effect of the Rail-Carried Tonnage on the Ultrasonic Surface and Lateral Wave Velocities. Russian Metallurgy (Metally), 2018, 2018, 421-425.	0.1	0
131	Stages and Fracture Mechanisms of Lamellar Pearlite of 100-m-Long Differentially Hardened Rails Under Long-Term Operation Conditions. Acta Metallurgica Sinica (English Letters), 2018, 31, 1356-1360.	1.5	1
132	Gradient Structure Generated in Hardox 450 Steel with Built-Up Layer. Inorganic Materials: Applied Research, 2018, 9, 427-432.	0.1	1
133	Gradient Structure of the Layer Applied to Hardox 450 Steel by Fe–C–Cr–Nb–W Powder Wire after Electron-Beam Treatment. Steel in Translation, 2018, 48, 229-232.	0.1	0
134	Multilayer structure of Al-Si alloy after electro-explosion alloying with yttrium oxide powder. Materials Research Express, 2018, 5, 116520.	0.8	6
135	Transformation of Carbides in Prolonged Rail Operation. Steel in Translation, 2018, 48, 97-103.	0.1	0
136	The Interaction Mechanism between Solid and Liquid Metals under Ultrasonic Action. Doklady Physics, 2018, 63, 117-120.	0.2	0
137	Rail Strengthening Nature in the Course of Long-Term Operation. Inorganic Materials: Applied Research, 2018, 9, 26-31.	0.1	1
138	Structure and properties changes of Al-Si alloy treated by pulsed electron beam. Materials Letters, 2018, 229, 377-380.	1.3	41
139	TRANSFORMATION OF CARBIDЕ PHASE IN RAILS AT LONG-TERM OPERATION. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2018, 61, 140-148.	0.1	3
140	REDISTRIBUTION OF CARBON ATOMS IN DIFFERENTIALLY CHARGED RAILS FOR LONG-TERM OPERATION. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2018, 61, 454-459.	0.1	3
141	The study of the wear resistance of the surface layers silumin after electron beam treatment. Deformatsiya I Razrushenie Materialov, 2018, , 23-27.	0.1	1
142	GRADIENT STRUCTURE OF THE LAYER FACED ON HARDOX 450 STEEL WITH Fe –Ðj–Cr–Nb–W POWDER AND MODIFIED BY ELECTRON BEAM PROCESSING. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2018, 61, 313-318.	WIRE 0.1	0
143	Degradation of structure and properties of rail surface layer at long-term operation. Materials Science and Technology, 2017, 33, 1473-1478.	0.8	7
144	Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants. IOP Conference Series: Earth and Environmental Science, 2017, 50, 012039.	0.2	1

#	Article	IF	CITATIONS
145	Structure and properties of a low-carbon steel surface modified by electric arc surfacing. Journal of Surface Investigation, 2017, 11, 1050-1055.	0.1	0
146	Structural phase states and properties of the layer surfaced on low-carbon steel with Fe‒C‒Cr‒Nb‒W powder-core wire followed by electron-beam processing. Journal of Surface Investigation, 2017, 11, 933-939.	0.1	1
147	Acid-Base Properties Of Glass Substrate And SiO2– Bi2O3Thin-Film Systems Obtained On It. IOP Conference Series: Earth and Environmental Science, 2017, 50, 012048.	0.2	0
148	Manufacture of materials using external fields. Materials Science and Technology, 2017, 33, 1397-1398.	0.8	1
149	Defect substructure change in 100-m differentially hardened rails in long-term operation. Materials Letters, 2017, 209, 224-227.	1.3	10
150	Nanohardness of wear-resistant surfaces after electron-beam treatment. Steel in Translation, 2017, 47, 245-249.	0.1	1
151	Nanoscale localization of plastic deformation in steel with a bainitic structure. Russian Metallurgy (Metally), 2017, 2017, 283-286.	0.1	1
152	Redistribution of carbon in the deformation of steel with bainite and martensite structures. Steel in Translation, 2017, 47, 445-448.	0.1	1
153	Formation and evolution of the structure and phase composition of stainless steel during electron-beam treatment and multiple-cycle fatigue. Inorganic Materials: Applied Research, 2017, 8, 521-527.	0.1	0
154	Structure and properties of strengthening layer on Hardox 450 steel. Materials Science and Technology, 2017, 33, 2040-2045.	0.8	8
155	Electrostimulated machining of metals. Steel in Translation, 2017, 47, 113-118.	0.1	2
156	Phase composition and defect substructure of double surfacing, formed with V–Cr–Nb–W powder wire on steel. Inorganic Materials: Applied Research, 2017, 8, 313-317.	0.1	0
157	Elemental and phase composition of TiB2–Mo coating sprayed on a steel by electro-explosive method. Inorganic Materials: Applied Research, 2017, 8, 423-427.	0.1	0
158	The physical basics of structure formation in electroexplosive coatings. Doklady Physics, 2017, 62, 67-70.	0.2	13
159	Structure of electro-explosion resistant coatings consisting of immiscible components. Materials Letters, 2017, 188, 25-28.	1.3	11
160	Structure and properties of Hardox 450 steel with arc welded coatings. AIP Conference Proceedings, 2017, , .	0.3	1
161	Electron-beam modification of a surface layer deposited on low-carbon steel by means of arc spraying. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 1353-1359.	0.1	3
162	Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation. Russian Metallurgy (Metally), 2017, 2017, 871-873.	0.1	1

#	Article	IF	CITATIONS
163	Variations in defect substructure and fracture surface of commercially pure aluminum under creep in weak magnetic field. Chinese Physics B, 2017, 26, 126203.	0.7	5
164	Analysis of Strain Hardening Mechanisms for Steel with a Bainitic Structure. Metallurgist, 2017, 61, 303-310.	0.2	0
165	Model of convection mass transfer in titanium alloy at low energy high current electron beam action. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012031.	0.3	Ο
166	Variation of Strength Characteristics of Titanium Surface Layers Under Magnetic Field Effect. Journal of Surface Investigation, 2017, 11, 1338-1341.	0.1	2
167	Physical nature of surface structure degradation in long term operated rails. AIP Conference Proceedings, 2017, , .	0.3	6
168	Metallographic study on eutectic silumin. AIP Conference Proceedings, 2017, , .	0.3	0
169	Gradient structure formed in commercially pure titanium irradiated with a pulsed electron beam. AIP Conference Proceedings, 2017, , .	0.3	1
170	Structure and properties of the layer deposited onto a low-carbon steel and then irradiated by an electron beam. Russian Metallurgy (Metally), 2017, 2017, 579-584.	0.1	0
171	Intense Pulsed Electron Beam Modification of Surface Layer Facing Formed on Hardox 450 Steel by Electrocontact Method. Journal of Surface Investigation, 2017, 11, 1342-1347.	0.1	1
172	Synthesising nanostructural wear-resistant coatings on martensite steel by welding methods. International Journal of Nanotechnology, 2017, 14, 627.	0.1	1
173	Mathematical Modeling of the Concentrated Energy Flow Effect on Metallic Materials. Metals, 2017, 7, 4.	1.0	33
174	Orientation of nickel-based alloy after thermal treatment. AIP Conference Proceedings, 2017, , .	0.3	0
175	Orientation and faulted structure of γ′-phases in lanthanum-alloyed Ni-Al-Cr superalloy. AlP Conference Proceedings, 2017, , .	0.3	Ο
176	Structure and properties of H-beams after accelerated water cooling. Steel in Translation, 2017, 47, 369-373.	0.1	1
177	Long-term operation surface changes in differentially quenched 100-m rails. Steel in Translation, 2017, 47, 658-661.	0.1	5
178	Structure and Properties of the Wear-Resistant Facing Modified by Electron-Beam Processing. Progress in Physics of Metals, 2017, 18, 111-139.	0.5	2
179	CHANGES IN STRUCTURE AND PHASE COMPOSITION OF THE SURFACE OF DIFFERENTIALLY HARDENED 100-METER RAILS IN OPERATION. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2017, 60, 826-830.	0.1	3
180	EQUIPMENT PROVISION OF ELECTROSTIMULATED METAL PROCESSING. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2017, 60, 157-163.	0.1	4

#	Article	IF	CITATIONS
181	SURFACE NANOHARDNESS OF WEAR RESISTANT SURFACING IRRADIATED BY ELECTRON BEAM. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2017, 60, 304-309.	0.1	1
182	CARBON REDISTRIBUTION UNDER DEFORMATION OF STEELS WITH BAINITE AND MARTENSITE STRUCTURES. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2017, 60, 544-548.	0.1	4
183	STRUCTURE-PHASE STATES, MECHANICAL AND TRIBOLOGICAL PROPERTIES OF THERMOMECHANICALLY STRENGTHENED BEAM. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2017, 60, 457-462.	0.1	0
184	Increase in Reliability of Metal Articles with Impulse Current Effect. MATEC Web of Conferences, 2016, 67, 06109.	0.1	0
185	Regularities of bainitic steel deformation transition. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012025.	0.3	1
186	A study on structure and tribological properties of the electroerosion coating Mo-Ni-Cu, formed by the mixed method on copper. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012040.	0.3	1
187	Electro-Explosive Doping of VT6 Titanium Alloy Surface by Boron Carbide. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012042.	0.3	3
188	Change of deformation characteristics and dislocation substructure of nonferrous metals under influence of magnetic field. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012038.	0.3	3
189	Fatigue variation of surface properties of silumin subjected to electron-beam treatment. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012012.	0.3	2
190	Formation Structural Phase Gradients in Rail Steel During Long-Term Operation. IOP Conference Series: Materials Science and Engineering, 2016, 112, 012038.	0.3	6
191	Mathematical Modelling Stress Distribution in a Metallic Plate with an Asymmetrical Notch. MATEC Web of Conferences, 2016, 67, 03053.	0.1	Ο
192	Effect of electron beam treatment on structural change in titanium alloy VT-0 at high-cycle fatigue. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012037.	0.3	3
193	Influence of hydrogen on the localization of plastic strain in low-carbon steel. Steel in Translation, 2016, 46, 851-854.	0.1	2
194	Structure of electroexplosive TiC–Ni composite coatings on steel after electron-beam treatment. Russian Metallurgy (Metally), 2016, 2016, 1064-1071.	0.1	4
195	Formation of the Increased Wear-Resistant Properties of Hardox 450 Steel by Deposited Coatings. IOP Conference Series: Materials Science and Engineering, 2016, 150, 012041.	0.3	1
196	Structural and phase states in high-quality rail. Steel in Translation, 2016, 46, 260-263.	0.1	7
197	Laws of the deformation-induced structural transformation in bainitic steel. Russian Metallurgy (Metally), 2016, 2016, 365-370.	0.1	0
198	Nanoscale level of the deformation band formation in bainite steel. AIP Conference Proceedings, 2016,	0.3	0

#	Article	IF	CITATIONS
199	Increase in fatigue life of steels by electron-beam processing. Journal of Surface Investigation, 2016, 10, 83-87.	0.1	6
200	Rail strengthening in prolonged operation. Steel in Translation, 2016, 46, 405-409.	0.1	0
201	Nature of the structural degradation of rail surfaces during operation. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 1483-1488.	0.1	11
202	Metallographic Examination of Forming Improved Mechanical Properties via Surfacing of Steel HARDOX 450 with Flux Cored Wire. Materials Science Forum, 2016, 870, 159-162.	0.3	5
203	Structure and phase composition of wear-resistant coatings of the TiB2–Al system prepared by electroexplosion sputtering. Russian Journal of Non-Ferrous Metals, 2016, 57, 75-79.	0.2	3
204	An increase in fatigue service life of eutectic silumin by electron-beam treatment. Russian Journal of Non-Ferrous Metals, 2016, 57, 236-242.	0.2	6
205	Comparative Analysis of the Structure and Phase States and Defect Substructure of Bulk and Differentially Quenched Rails. Metallurgist, 2016, 60, 422-427.	0.2	1
206	Long-term operation of rail steel: Degradation of structure and properties of surface layer. Journal of Surface Investigation, 2016, 10, 1101-1105.	0.1	10
207	Formation of internal stress fields in rails during long-term operation. Russian Metallurgy (Metally), 2016, 2016, 371-374.	0.1	14
208	Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012080.	0.3	2
209	Formation Wear Resistant Coatings on Martensite Steel Hardox 450 by Welding Methods. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012079.	0.3	2
210	Physical nature of rail strengthening in long term operation. AIP Conference Proceedings, 2016, , .	0.3	7
211	Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment. AIP Conference Proceedings, 2016, , .	0.3	3
212	Estimation of the residual stresses in rails using electromagnetic–acoustic introduction–reception of waves. Russian Metallurgy (Metally), 2016, 2016, 992-995.	0.1	5
213	Nanolayer formation during hydrodynamic instability under external stimuli. Steel in Translation, 2016, 46, 679-685.	0.1	2
214	Surface layer structure degradation of rails in prolonged operation. Journal of Surface Investigation, 2016, 10, 76-82.	0.1	11
215	Degradation of rail-steel structure and properties of the surface layer. Steel in Translation, 2016, 46, 567-570.	0.1	8
216	Formation features of structure-phase states of Cr–Nb–C–V containing coatings on martensitic steel. Journal of Surface Investigation, 2016, 10, 1119-1124.	0.1	31

#	Article	IF	CITATIONS
217	Electric arc surfacing on low carbon steel: Structure and properties. AIP Conference Proceedings, 2016, , .	0.3	3
218	Analysis of Structure Formed in a Titanium Surface Layer Alloyed with Yttrium. Metallurgist, 2016, 59, 829-834.	0.2	5
219	Influence of hydrogen on the localization of plastic strain in low-carbon steel during electrolytic saturation. Steel in Translation, 2016, 46, 107-111.	0.1	1
220	Formation of Structural-Phase States, Defect Substructure and Properties of a Surface of Thermomechanically Hardened Low-Carbon Steel. Progress in Physics of Metals, 2016, 17, 303-341.	0.5	4
221	Wear resistance and structure–phase states in the surface of the welding-deposited coating on steel. Russian Metallurgy (Metally), 2015, 2015, 1124-1128.	0.1	1
222	Structure of electroexplosive TiB2–Ni composite coatings after electron beam processing. Inorganic Materials: Applied Research, 2015, 6, 536-541.	0.1	6
223	Increasing the fatigue life of steel and alloys by electron-beam treatment. Steel in Translation, 2015, 45, 322-325.	0.1	1
224	Evolution of the structure and phase states of rails in prolonged operation. Steel in Translation, 2015, 45, 254-257.	0.1	15
225	Structure-phase states and wear resistance of deposition surface formed on steel by electric arc method. IOP Conference Series: Materials Science and Engineering, 2015, 71, 012066.	0.3	Ο
226	The role of electro-explosion alloying with titanium diboride and treatment with pulsed electron beam in the surface modification of VT6 alloy. AIP Conference Proceedings, 2015, , .	0.3	1
227	Structure of the molybdenum–carbon–copper composite coatings produced by electroexplosive spraying followed by electron-beam treatment. Russian Metallurgy (Metally), 2015, 2015, 1134-1138.	0.1	2
228	Fragmentation of the grain structure of quenched rails. Steel in Translation, 2015, 45, 759-761.	0.1	3
229	Carbon distribution in bainitic steel subjected to deformation. , 2015, , .		1
230	Structure-phase states evolution in rails during a long operation. AIP Conference Proceedings, 2015, , .	0.3	5
231	Ultrasonic method for estimation the stress state in rails. AIP Conference Proceedings, 2015, , .	0.3	1
232	Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue. AIP Conference Proceedings, 2015, , .	0.3	10
233	Structure–phase state of the surface layers in rails subjected to differential hardening. Russian Metallurgy (Metally), 2015, 2015, 1094-1097	0.1	1
234	Structural-phase states and tribological properties of electroexplosive composite coatings on copper after electron-beam treatment. Journal of Surface Investigation, 2015, 9, 699-705.	0.1	1

#	Article	IF	CITATIONS
235	Structure of the surface layer of a wear-resistant coating after treatment with a high-intensity electron beam. Journal of Surface Investigation, 2015, 9, 934-938.	0.1	4
236	Evolution of the defect subsystem of structural steel with bainite structure on deformation. Steel in Translation, 2015, 45, 571-574.	0.1	1
237	Fatigue life of silumin treated with a high-intensity pulsed electron beam. Journal of Surface Investigation, 2015, 9, 1056-1059.	0.1	27
238	Regularities of varying the dislocation substructure of copper under creep in the magnetic field. Russian Journal of Non-Ferrous Metals, 2015, 56, 441-448.	0.2	3
239	Fatigue life of silumin irradiated by high intensity pulsed electron beam. IOP Conference Series: Materials Science and Engineering, 2015, 91, 012029.	0.3	3
240	Investigation of defect copper substructure disrupted in creep condition under the action of magnetic field. IOP Conference Series: Materials Science and Engineering, 2015, 91, 012030.	0.3	0
241	Fractography of the fatigue fracture surface of silumin irradiated by high-intensity pulsed electron beam. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012011.	0.3	6
242	Features of formation of structural-phase states on the surface of titanium alloy VT1-0 after electron-ion-plasma treatment. Journal of Physics: Conference Series, 2015, 652, 012015.	0.3	0
243	Electro-explosive alloying of VT6 alloy surface by boron carbide powder with the subsequent electron-beam treatment. Journal of Physics: Conference Series, 2015, 652, 012047.	0.3	0
244	Structure-phase states of silumin surface layer after electron beam and high cycle fatigue. Journal of Physics: Conference Series, 2015, 652, 012028.	0.3	2
245	Effect of the surface charge density on the creep of copper. Russian Metallurgy (Metally), 2015, 2015, 74-77.	0.1	0
246	Structurally-Phase States of Electroexplosive Composite Coatings of the TiB2â^'Mo System After Electron-Beam Treatment. Russian Physics Journal, 2015, 58, 354-360.	0.2	2
247	Effect of the magnetic field on the surface morphology of copper upon creep fracture. Journal of Surface Investigation, 2015, 9, 410-414.	0.1	10
248	Formation of a microcomposite structure in the surface layer of yttrium-doped titanium. Journal of Surface Investigation, 2015, 9, 377-382.	0.1	4
249	Structural evolution of silumin treated with a high-intensity pulse electron beam and subsequent fatigue loading up to failure. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 1169-1172.	0.1	9
250	Nanostructural States and Properties of the Surfacing Formed on Steel by a Cored Wire. Russian Physics Journal, 2015, 58, 471-477.	0.2	8
251	Steel fatigue life extension by pulsed electron beam irradiation. Journal of Surface Investigation, 2015, 9, 599-603.	0.1	1
252	Structure gradient in wear-resistant coatings on steel. Steel in Translation, 2015, 45, 120-124.	0.1	10

#	Article	IF	CITATIONS
253	Evolution of structure and properties of railhead fillet in long-term operation. Materials and Electronics Engineering, 2015, 2, .	0.1	5
254	Regularities of Formation of Structural–Phase States on a Surface of Metals and Alloys at an Electroexplosive Alloying. Progress in Physics of Metals, 2015, 16, 119-157.	0.5	8
255	Structure, Phase Composition and Properties of Surface Layers of the Titanium after Electroexplosive Doping with Yttrium and Electron-Beam Processing. Progress in Physics of Metals, 2015, 16, 175-227.	0.5	8
256	EVOLUTION OF RAIL STRUCTURE-PHASE STATES AT CONTINUOUS SERVICE. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2015, 58, 262.	0.1	4
257	STEEL 45 SURFACE MODIFICATION BY A COMBINED ELECTRON-ION-PLASMA METHOD. High Temperature Material Processes, 2015, 19, 29-36.	0.2	2
258	DEPTH STRUCTURE OF WEAR RESISTANCE COATING ON STEEL OBTAINED BY ELECTRIC ARC METHOD. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2015, 58, 121.	0.1	2
259	Work Hardening of Steel with a Bainite Structure. Progress in Physics of Metals, 2015, 16, 299-328.	0.5	3
260	Increase of a Fatigue Life of a Silumin by Electron-Beam Processing. Progress in Physics of Metals, 2015, 16, 265-297.	0.5	8
261	Structure and properties of surface layers obtained due to titanium-surface alloying by yttrium via combined electron-ion-plasma treatment. Journal of Surface Investigation, 2014, 8, 1286-1290.	0.1	4
262	Structural and phase states of bulk-quenched rail and differentially quenched rail. Steel in Translation, 2014, 44, 553-557.	0.1	1
263	Structural-phase states and properties of coatings welded onto steel surfaces using powder wires. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 1015-1021.	0.1	24
264	Formation of Surface Layers in Cu-C System. Advanced Materials Research, 2014, 1013, 224-228.	0.3	7
265	Analysis of structure-phase states in-a-bulk hardened and a head-hardened rails. , 2014, , .		2
266	Analysis of structure and phase composition of rails subjected to differential hardening at different regimes. , 2014, , .		0
267	Surface hardening alloy VT6 of electric explosion and by electron beam. , 2014, , .		0
268	Structure, phase composition, and defect substructure of differentially quenched rail. Steel in Translation, 2014, 44, 883-885.	0.1	4
269	Dislocation substructures and internal stress fields in bulk- and differentially quenched rails. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 981-987.	0.1	0
270	Combined electron-ion-plasma doping of a titanium surface with yttrium: Analyzing structure and properties. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 1183-1187.	0.1	4

#	Article	IF	CITATIONS
271	Estimation of Current Amplitude Pulse. Advanced Materials Research, 2014, 1013, 166-169.	0.3	0
272	Structure and Properties of Surface Alloys in Ti-Y System. Advanced Materials Research, 2014, 1013, 229-233.	0.3	1
273	Surface gradient structure-phase states formation under differentiated quenching of 100 meter rails. Journal of Surface Investigation, 2014, 8, 1345-1350.	0.1	1
274	Regularities of Macroscopic Localization of Plastic Deformation in the Stretching of a Low-Carbon Steel. Russian Physics Journal, 2014, 57, 396-402.	0.2	6
275	Structure of low-carbon steel sheet after scale removal. Steel in Translation, 2014, 44, 264-267.	0.1	2
276	Evolution of the structure and phase composition of low-carbon ferrite steel under conditions of hydrogen saturation and deformation. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 237-240.	0.1	2
277	Modification of the surface of the VT6 alloy by plasma of electric explosion of a conducting material and by electron beam. Russian Journal of Non-Ferrous Metals, 2014, 55, 51-56.	0.2	6
278	Structurally-Phase States of Surface Titanium VT1-0 Layers After Electroexplosive Carbonization with a Weighed Zirconium Oxide Powder Sample and Electron Beam Treatment. Russian Physics Journal, 2014, 57, 252-258.	0.2	4
279	Structure, Phase Composition, and Defective Substructure of Rails of the Highest Quality Grade. Russian Physics Journal, 2014, 57, 259-265.	0.2	0
280	Formation of gradients of structure, phase composition, and dislocation substructure in differentially hardened rails. Nanotechnologies in Russia, 2014, 9, 288-292.	0.7	4
281	Structure and Properties of the Wear-Resistant Coatings Fused on Steel with Flux Cored Wires by an Electric Arc Method. Progress in Physics of Metals, 2014, 15, 213-234.	0.5	11
282	ELECTROEXPLOSIVE DOPING OF TITANIUM ALLOY BY BORON CARBIDE AND SUBSEQUENT ELECTRON BEAM PROCESSING. High Temperature Material Processes, 2014, 18, 281-290.	0.2	1
283	Formation of Structure, Phase Composition and Faulty Substructure in the Bulk- and Differentially-Hard-Tempered Rails. Progress in Physics of Metals, 2014, 15, 1-33.	0.5	5
284	On the fatigue strength of grade 20Cr13 hardened steel modified by an electron beam. Journal of Surface Investigation, 2013, 7, 90-93.	0.1	11
285	The formation mechanism providing high-adhesion properties of an electric-explosive coating on a metal basis. Doklady Physics, 2013, 58, 82-84.	0.2	22
286	Temperature distribution produced by pulsed energy fluxes, with evaporation of the target. Steel in Translation, 2013, 43, 55-58.	0.1	6
287	Increase in the fatigue durability of stainless steel by electron-beam surface treatment. Journal of Surface Investigation, 2013, 7, 94-98.	0.1	25
288	Evolution of the phase composition and defect substructure of rail steel subjected to high-intensity electron-beam treatment. Journal of Surface Investigation, 2013, 7, 990-995.	0.1	26

#	Article	IF	CITATIONS
289	Evolution of the phase composition and defect substructure in the surface layer of rail steel under fatigue. Steel in Translation, 2013, 43, 724-727.	0.1	6
290	Effect of electropulsing treatment on the microstructure and superelasticity of TiNi alloy. Applied Physics A: Materials Science and Processing, 2013, 111, 1195-1201.	1.1	18
291	Effect of electropulsing treatment on the mechanical properties of Q235 steel strip. Steel in Translation, 2013, 43, 344-347.	0.1	2
292	MAX phases in titanium and aluminum alloys. Steel in Translation, 2013, 43, 356-359.	0.1	0
293	Model of formation of inner nanolayers in shear flows of material. Technical Physics, 2013, 58, 1544-1547.	0.2	13
294	Scale Levels of the Structure–Phase States and Fatigue Life of a Rail Steel after Electron-Beam Treatment. Progress in Physics of Metals, 2013, 14, 67-83.	0.5	12
295	IRON ALLOYS SURFACE MODIFICATION BY PLASMA FORMED DURING ELECTRIC EXPLOSION OF ALUMINUM FOIL. High Temperature Material Processes, 2013, 17, 233-240.	0.2	0
296	Electron-beam surface treatment of alloys based on titanium, modified by plasma from an electrical explosion of conducting material. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 1246-1252.	0.1	4
297	Pulse electric current effect on mechanical properties of titanium aluminide produced by the self-propagating high-temperature synthesis technique. Strength of Materials, 2012, 44, 636-644.	0.2	5
298	Formation of dislocation-free nanostructures in metals on electroexplosive alloying. Steel in Translation, 2012, 42, 820-822.	0.1	2
299	Fatigue failure of stainless steel after electron-beam treatment. Steel in Translation, 2012, 42, 486-488.	0.1	15
300	Evolution of the structural and phase states in a plasma-hardened iron roller. Steel in Translation, 2012, 42, 489-494.	0.1	2
301	Formation of nanocomposite layers at the surface of VT1-0 titanium in electroexplosive carburization and electron-beam treatment. Steel in Translation, 2012, 42, 499-501.	0.1	8
302	Nanocrystalline structure and fatigue life of stainless steel. Steel in Translation, 2012, 42, 316-318.	0.1	2
303	Formation of structure-phase states and dislocation substructures during thermomechanical hardening of Fe–0.09C–2Mn–1Si steel. Russian Physics Journal, 2012, 54, 1034-1045.	0.2	1
304	Effect of a pulsed electromagnetic field on stress relaxation in concentrator-containing flat specimens. Strength of Materials, 2012, 44, 27-32.	0.2	4
305	THE EVOLUTION OF THE GRAIN STRUCTURE OF THE SURFACE LAYER OF STEEL 20H23N18 SUBJECTED TO ELECTRON-BEAM PROCESSING AND HIGH-CYCLE OF LOADING. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2012, 55, 56-60.	0.1	2
306	MATHEMATICAL MODEL OF FORMATION OF THE ZONE BOUNDARY OF ELECTRO-EXPLOSIVE ALLOYING WITH THE BASIS OF METAL. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2012, 55, 53-56.	0.1	1

#	Article	IF	CITATIONS
307	Gradient structural phase states formed in steel 08Kh18N10T in the course of high-cycle fatigue to failure. Physics of Metals and Metallography, 2011, 112, 81-89.	0.3	6
308	Effect of the electric potential on the surface tension of iron. Russian Metallurgy (Metally), 2011, 2011, 89-90.	0.1	1
309	Effect of an electric potential on the formation of a dislocation structure during creep of aluminum. Russian Metallurgy (Metally), 2011, 2011, 423-428.	0.1	0
310	Formation of surface gradient structural-phase states under electron-beam treatment of stainless steel. Journal of Surface Investigation, 2011, 5, 974-978.	0.1	38
311	Surface relief and structure of electroexplosive composite surface layers of the molybdenum-copper system. Journal of Surface Investigation, 2011, 5, 1112-1117.	0.1	13
312	Effect of the electric potential of the aluminum surface on stress relaxation. Technical Physics, 2011, 56, 877-880.	0.2	4
313	Evolution of the structural-phase state of the surface of plasma-hardened rollers. Steel in Translation, 2011, 41, 102-104.	0.1	2
314	Formation of gradient structure-phase states in thermomechanical hardening. Steel in Translation, 2011, 41, 283-286.	0.1	6
315	Surface modification by the EVU 60/10 electroexplosive system. Steel in Translation, 2011, 41, 464-468.	0.1	18
316	Multicyclic fatigue of stainless steel treated by a high-intensity electron beam: surface layer structure. Russian Physics Journal, 2011, 54, 575-583.	0.2	31
317	Gradient Structural-Phase States in the Thermostrengthened Low-Carbon Steel Reinforcement. Materials and Manufacturing Processes, 2011, 26, 144-146.	2.7	4
318	Formation of stress field gradients during the high cycle fatigue of an austenitic corrosion-resistant steel. Russian Metallurgy (Metally), 2010, 2010, 268-272.	0.1	0
319	Formation of structure and mechanical properties in the accelerated cooling of an H beam. Steel in Translation, 2010, 40, 114-118.	0.1	3
320	Evolution of the structural and phase states in hardened cast-iron rollers: Part 1. Steel in Translation, 2010, 40, 322-324.	0.1	1
321	Formation of convective structures in metals and alloys under the action of pulsed multiphase plasma jets. Steel in Translation, 2010, 40, 531-536.	0.1	5
322	Formation of nanophases in electroexplosive alloying with aluminum and boron and electron-beam treatment of titanium surfaces. Steel in Translation, 2010, 40, 723-728.	0.1	3
323	Production of DP155 I-beams for monorail tracks. Steel in Translation, 2010, 40, 873-875.	0.1	1
324	Nanosized structure formation in metals under the action of pulsed electric-explosion-induced plasma jets. Technical Physics Letters, 2010, 36, 656-659.	0.2	7

#	Article	IF	CITATIONS
325	Ways of the dislocation substructure evolution in austenite steel under low and multicycle fatigue. Procedia Engineering, 2010, 2, 83-90.	1.2	6
326	Dislocation substructure evolution on Al creep under the action of the weak electric potential. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 858-861.	2.6	26
327	Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3040-3043.	2.6	32
328	Structural-Phase States of Titanium After an Electroexplosive Alloying and the Subsequent Electron-Beam Treatment. Progress in Physics of Metals, 2010, 11, 273-293.	0.5	3
329	10.1007/s11454-008-2009-y. , 2010, 53, 204.		0
330	Formation of the fine structure and phase composition of structural steel on quenching. Steel in Translation, 2009, 39, 302-306.	0.1	4
331	Improving the rolling of rails. Steel in Translation, 2009, 39, 454-455.	0.1	0
332	Carbidization of titanium alloys in electroexplosive carburization and additional heat treatment. Steel in Translation, 2009, 39, 466-469.	0.1	1
333	Structure, strength, and wear resistance of hadfield steel subjected to surface magnetic-pulse treatment. Steel in Translation, 2009, 39, 629-632.	0.1	1
334	Localization of plastic deformation of quenched structural steel. Steel in Translation, 2009, 39, 851-853.	0.1	0
335	Role of the electric potential in the creep acceleration and formation of Al fracture surface. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 1245-1248.	0.1	1
336	Formation of metal and alloy surface layers at electroexplosive alloying. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 1253-1256.	0.1	0
337	Influence of contact potential difference and electric potential on the microhardness of metals. Physics of the Solid State, 2009, 51, 1137-1141.	0.2	28
338	Features of electrical explosion alloying of metals and alloys. Russian Physics Journal, 2008, 51, 517-530.	0.2	2
339	Gradient structure-phase states formed in Hadfield steel during dry sliding wear. Russian Physics Journal, 2008, 51, 1168-1173.	0.2	3
340	Modification of steel surface layer by electron beam treatment. Metal Science and Heat Treatment, 2008, 50, 569-574.	0.2	2
341	Effect of elastic excitations on the surface structure of hadfield steel under friction. Technical Physics, 2008, 53, 204-210.	0.2	32
342	Carbon redistribution in cast moderately alloyed structural steel on heat treatment. Steel in Translation, 2008, 38, 434-436.	0.1	0

#	Article	IF	CITATIONS
343	Evolution of the structure and phase composition of an equiatomic Fe-Co alloy on quenching from the liquid state. Steel in Translation, 2008, 38, 437-438.	0.1	0
344	Nanocrystalline grains and phase composition in the plasma hardening of cast-iron rollers. Steel in Translation, 2008, 38, 603-607.	0.1	1
345	New methods of rolling and straightening rails from continuous-cast billet at OAO NKMK. Steel in Translation, 2008, 38, 973-975.	0.1	Ο
346	Thermomechanical hardening of large-diameter reinforcement. Steel in Translation, 2008, 38, 982-986.	0.1	1
347	Structure and physical-mechanical properties of equiatomic ordering FeCo alloy obtained by quenching from the liquid state. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1278-1282.	0.1	2
348	On the influence of the electrical potential on the creep rate of aluminum. Physics of the Solid State, 2007, 49, 1457-1459.	0.2	23
349	Electroexplosive boron-aluminum coating of iron: Phase composition and defect substructure. Steel in Translation, 2007, 37, 106-109.	0.1	2
350	Influence of tempering on the phase composition of cast moderately alloyed structural steel. Steel in Translation, 2007, 37, 110-114.	0.1	5
351	Morphological features of the crystallization of surface iron and nickel layers in electroexplosive alloying. Steel in Translation, 2007, 37, 493-496.	0.1	Ο
352	Structural-phase states and disintegration of thermally hardened large-diameter reinforcement. Steel in Translation, 2007, 37, 497-500.	0.1	0
353	Forming structural-phase states of the surface layer of steel by electron-beam treatment. Steel in Translation, 2007, 37, 670-672.	0.1	1
354	Formation of structure-phase states in gradient layers of 20X2H4A steel after nitrocementation. Steel in Translation, 2007, 37, 986-988.	0.1	2
355	Formation of structural-phase states of the surface of Hadfield steel. Steel in Translation, 2007, 37, 989-990.	0.1	2
356	Gradient state of the surface layers of iron and nickel after electro-explosive alloying. Metallurgist, 2007, 51, 151-158.	0.2	1
357	Phase composition and defect substructure of nickel alloyed with boron and copper by electric explosion of conductors. Russian Physics Journal, 2007, 50, 199-203.	0.2	4
358	Structure and hot-rolled reinforcement rods properties evolution in the process of long service life. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 125-131.	2.6	2
359	Influence of tempering on the dislocation substructure and scalar density for cast construction intermediate-alloyed steel. Russian Physics Journal, 2006, 49, 47-54.	0.2	2
360	Structural and phase states in austenitic steel subjected to high-cycle fatigue. Russian Physics Journal, 2006, 49, 97-104.	0.2	0

#	Article	IF	CITATIONS
361	The structural-phase state changes under the pulse current influence on the fatigue loaded steel. International Journal of Fatigue, 2005, 27, 1221-1226.	2.8	29
362	Macrolocalization of plastic strain in creep of fine-grain aluminum. Technical Physics, 2005, 50, 376-379.	0.2	10
363	Electroexplosive Carburizing of Iron: Surface Relief, Phase Composition and Defect Substructure. Russian Physics Journal, 2005, 48, 929-935.	0.2	3
364	Evolution of the Structure and Carbon Atom Transfer in the Zone of Fatigue Crack Growth in Ferrite-Pearlite Steel. Russian Physics Journal, 2003, 46, 1047-1056.	0.2	2
365	Evolution of a Martensite Packet under Multicycle Fatigue Loading. Russian Physics Journal, 2003, 46, 1181-1185.	0.2	0
366	Structural strength of welded joints in blast furnace jackets. Welding International, 2003, 17, 318-320.	0.3	0
367	Title is missing!. Russian Physics Journal, 2002, 45, 319-328.	0.2	0
368	Processes Proceeding in Fe–0.12C–1Cr–1Mo–1V Steel after Pressure Cycling. Russian Physics Journal, 2002, 45, 232-241.	0.2	0
369	Structure and Phase Content of a Weld in Fe–0.09C–2Mn–1Si Steel. Russian Physics Journal, 2002, 45, 242-250.	0.2	0
370	Title is missing!. Russian Physics Journal, 2002, 45, 261-273.	0.2	4
371	Redistribution of hydrogen in calibrated wire. International Journal of Hydrogen Energy, 2001, 26, 741-747.	3.8	0
372	Healing fatigue damage in steel with electric current pulses. Technical Physics, 2000, 45, 309-311.	0.2	1
373	Increasing the endurance of welded joints operating under low-cycle loading. Welding International, 1998, 12, 658-660.	0.3	0
374	Ultrasonic monitoring of the accumulation of aging damage and recovery of the useful lifetime of industrial parts. Technical Physics, 1997, 42, 1094-1096.	0.2	7
375	Laws of electrical stimulation of plastic deformation of metals and alloys at various structural levels. Russian Physics Journal, 1996, 39, 237-261.	0.2	5
376	Hydrogen embrittlement of ferrite-pearlite steels during drawing. Russian Physics Journal, 1996, 39, 262-270.	0.2	0
377	Features of work hardening of Kh18N10T steel under conditions of cold electrostimulated drawing. Strength of Materials, 1993, 25, 433-436.	0.2	0
378	Mechanics of electrostimulated wire drawing. International Journal of Solids and Structures, 1991, 27, 1639-1643.	1.3	7

#	Article	IF	CITATIONS
379	Effects of current pulses on the mobility of fast-moving dislocations. Soviet Physics Journal (English) Tj ETQq1 1	0.784314	rgBT /Overloo
380	Mechanisms of electrostimulated plasticity during wire-drawing of stainless steel Kh18N10T. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1991, 34, 1004-1007.	0.0	0
381	Influence of current pulses in plastic deformation on the macrostructure of austenitic chromomanganese steel. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh) Tj ETQq1	1 007.8431	4 rgBT /Overl
382	Influence of electric current pulses on the mobility and multiplication of dislocations in Zn-monocrystals. European Physical Journal D, 1990, 40, 895-902.	0.4	8
383	Electron microscopy of steel 08G2S wire after electrostimulated drawing. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1990, 33, 1011-1015.	0.0	0
384	Effects of current pulses on dislocation mobility in Zn at 77 K. Soviet Physics Journal (English) Tj ETQq0 0 0 rgB1	/Oyerlock	10 ₀ Tf 50 542
385	The Effect of Electric Current Pulses on the Dislocation Mobility in Zinc Single Crystals. Physica Status Solidi A, 1990, 121, 437-443.	1.7	19
386	Influence of current pulses on the mobility and multiplication of dislocations in Zn. Strength of Materials, 1989, 21, 1335-1341.	0.2	5
387	, Dynamic retardation of dislocations in impure NaCl crystals. Soviet Physics Journal (English) Tj ETQq1 1 0.7843	14 rgBT /Ov	verlock 10 Tfl
388	Influence of impurities and electric fields on the kinetic characteristics of the expansion of dislocation half-loops in NaCl:2236; Ca2+ crystals. Soviet Physics Journal (English Translation of) Tj ETQq0 0 0 r	gBTØØverla	ocko10 Tf 50 3
389	On the mechanism of the electric field effect on dislocation mobility in alkali-halide crystals. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1975, 18, 605-609.	0.0	0
390	Effect of temperature on stress relaxation in NaCl crystals. Strength of Materials, 1975, 7, 605-607.	0.2	0
391	Stress relaxation in nacl crystals in an electric field. Soviet Physics Journal (English Translation of) Tj ETQq1 1 0.7	784314 rgE 0.0	BT /Overlock 1
392	Modification of the steel 45G17UZ grained structure at the fatigue testing under conditions of electrical stimulation. , 0, , .		0
393	Superior Quality Rails: Structure-Phase States and Defect Substructure. Advanced Materials Research, 0, 1013, 127-132.	0.3	1
394	Electron-Beam Surfacing Wear-Resistant Coatings, Reinforced Refractory Metal's Borides. Applied Mechanics and Materials, 0, 698, 419-423.	0.2	5
395	Plastic Deformation Localization of Low Carbon Steel: Hydrogen Effect. Advanced Materials Research, 0, 1013, 77-83.	0.3	1
396	Structure and Properties of Wear-Resistant Weld Deposit Formed on Martensitic Steel Using the Electric-Arc Method. Advanced Materials Research, 0, 1013, 194-199.	0.3	7

#	Article	IF	CITATIONS
397	Formation of Fine Structure of Differentially Hardened Rails. Applied Mechanics and Materials, 0, 682, 41-45.	0.2	2
398	Magnetic Field Effect on Creep of Polycrystalline Copper. Advanced Materials Research, 0, 1120-1121, 962-966.	0.3	2
399	An Impact of the Magnetic Field on the Fine Copper Structure under Creep Failure Conditions. Applied Mechanics and Materials, 0, 788, 111-116.	0.2	0
400	Modification of the Titanium Surface Layer by the Yttrium. Advanced Materials Research, 0, 1085, 63-67.	0.3	0
401	The Influence of Electron Beam Treatment on Al-Si Alloy Structure Destroyed at High-Cycle Fatigue. Key Engineering Materials, 0, 675-676, 655-659.	0.4	9
402	Increase of Fatigue Life of Titanium VT1-0 after Electron Beam Treatment. Key Engineering Materials, 0, 704, 15-19.	0.4	4
403	Structure and Properties of the Surface Layer of a Wear-Resistant Coating on Martensitic Steel after Electron-Beam Processing. Materials Science Forum, 0, 906, 101-106.	0.3	1
404	Modification of Silumin Using the Electroexplosive Method. Materials Science Forum, 0, 906, 56-62.	0.3	0
405	Mechanisms of nanoscale structure formation during electron beam treatment of silumin. IOP Conference Series: Materials Science and Engineering, 0, 447, 012061.	0.3	1
406	Microstructure and wear properties of Hardox 450 steel surface modified by Fe-C-Cr-Nb-W powder wire surfacing and electron beam treatment. IOP Conference Series: Materials Science and Engineering, 0, 411, 012024.	0.3	6
407	Microstructure and Phase Composition of the Cr-Mn-Fe-Co-Ni High-Entropy Alloy Obtained by Wire-Arc Additive Manufacturing. Key Engineering Materials, 0, 910, 748-753.	0.4	1