
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4859963/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies to achieve significant physiological concentrations of bioactive phytoestrogens in plasma. Critical Reviews in Food Science and Nutrition, 2023, 63, 2203-2215.	5.4	4
2	Flavone, flavanone and flavonol metabolism from soybean and flaxseed extracts by the intestinal microbiota of adults and infants. Journal of the Science of Food and Agriculture, 2022, 102, 2575-2583.	1.7	1
3	Effect of storage and heat treatment on the levels of bioactive flavonoids produced in fermented soy beverages. LWT - Food Science and Technology, 2022, 154, 112872.	2.5	10
4	Development of soy beverages enriched in O-desmethylangolesin and 6-hydroxy-O-desmethylangolesin by engineered lactic acid bacteria. LWT - Food Science and Technology, 2022, 163, 113526.	2.5	2
5	Identification and cloning of the first O-demethylase gene of isoflavones from Bifidobacterium breve INIA P734. LWT - Food Science and Technology, 2022, 162, 113510.	2.5	2
6	Catabolite responsive elements as a strategy for the control of heterologous gene expression in lactobacilli. Applied Microbiology and Biotechnology, 2021, 105, 225-233.	1.7	4
7	Degradation of phenolic compounds found in olive products by Lactobacillus plantarum strains. , 2021, , 133-144.		10
8	The use of <i>Lactobacillus plantarum</i> esterase genes: a biotechnological strategy to increase the bioavailability of dietary phenolic compounds in lactic acid bacteria. International Journal of Food Sciences and Nutrition, 2021, 72, 1035-1045.	1.3	11
9	Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients, 2021, 13, 1860.	1.7	3
10	Heterologous production of equol by lactic acid bacteria strains in culture medium and food. International Journal of Food Microbiology, 2021, 360, 109328.	2.1	12
11	Architecture Insight of Bifidobacterial α-L-Fucosidases. International Journal of Molecular Sciences, 2021, 22, 8462.	1.8	7
12	Evoglow-Pp1 and mCherry proteins: a dual fluorescent labeling system for lactic acid bacteria. Applied Microbiology and Biotechnology, 2021, 105, 7367-7378.	1.7	2
13	Metabolism of flavonoids and lignans by lactobacilli and bifidobacteria strains improves the nutritional properties of flaxseed-enriched beverages. Food Research International, 2021, 147, 110488.	2.9	16
14	Genome Sequence of the Reuterin-Producing Strain Limosilactobacillus reuteri INIA P572. Microbiology Resource Announcements, 2021, 10, e0098821.	0.3	0
15	Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health. Critical Reviews in Food Science and Nutrition, 2020, 60, 1922-1937.	5.4	37
16	Fluorescent detection of nisin by genetically modified Lactococcus lactis strains in milk and a colonic model: Application of whole-cell nisin biosensors. Journal of Bioscience and Bioengineering, 2020, 129, 435-440.	1.1	8
17	Production of flavonoid and lignan aglycones from flaxseed and soy extracts by <i>Bifidobacterium</i> strains. International Journal of Food Science and Technology, 2020, 55, 2122-2131.	1.3	11
18	Natural and engineered promoters for gene expression in Lactobacillus species. Applied Microbiology and Biotechnology, 2020, 104, 3797-3805.	1.7	19

#	Article	IF	CITATIONS
19	Expression of a β-glucosidase in bacteria with biotechnological interest confers them the ability to deglycosylate lignans and flavonoids in vegetal foods. Applied Microbiology and Biotechnology, 2020, 104, 4903-4913.	1.7	24
20	Application of recombinant lactic acid bacteria and bifidobacteria able to enrich soy beverage in dihydrodaidzein and dihydrogenistein. Food Research International, 2020, 134, 109257.	2.9	13
21	Production of O-desmethylangolensin, tetrahydrodaidzein, 6'-hydroxy-O-desmethylangolensin and 2-(4-hydroxyphenyl)-propionic acid in fermented soy beverage by lactic acid bacteria and Bifidobacterium strains. Food Chemistry, 2020, 318, 126521.	4.2	22
22	Bile-induced promoters for gene expression in Lactobacillus strains. Applied Microbiology and Biotechnology, 2019, 103, 3819-3827.	1.7	8
23	Influence of different lignan compounds on enterolignan production by Bifidobacterium and Lactobacillus strains. International Journal of Food Microbiology, 2019, 289, 17-23.	2.1	39
24	Bifidobacterium pseudocatenulatum INIA P815: The first bacterium able to produce urolithins A and B from ellagic acid. Journal of Functional Foods, 2018, 45, 95-99.	1.6	75
25	Production of the bioactive isoflavone O-desmethylangolensin by Enterococcus faecium INIA P553 with high efficiency. Journal of Functional Foods, 2018, 40, 180-186.	1.6	13
26	Incomplete metabolism of phytoestrogens by gut microbiota from children under the age of three. International Journal of Food Sciences and Nutrition, 2018, 69, 334-343.	1.3	12
27	Virulence and Antibiotic Resistance of Enterococci Isolated from Healthy Breastfed Infants. Microbial Drug Resistance, 2018, 24, 63-69.	0.9	22
28	A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Critical Reviews in Biotechnology, 2017, 37, 296-308.	5.1	69
29	Bifidobacterium adolescentis INIA P784: The first probiotic bacterium capable of producing enterodiol from lignan extracts. Journal of Functional Foods, 2017, 29, 269-274.	1.6	18
30	Optimization of reuterin production in cheese by Lactobacillus reuteri. Journal of Food Science and Technology, 2017, 54, 1346-1349.	1.4	14
31	Transformation of plant isoflavones into bioactive isoflavones by lactic acid bacteria and bifidobacteria. Journal of Functional Foods, 2017, 39, 198-205.	1.6	44
32	Phytoestrogen metabolism by lactic acid bacteria: Enterolignan production by Lactobacillus salivarius and Lactobacillus gasseri strains. Journal of Functional Foods, 2017, 37, 373-378.	1.6	22
33	Genetic engineering as a powerful tool to improve probiotic strains. Biotechnology and Genetic Engineering Reviews, 2017, 33, 173-189.	2.4	14
34	Short communication: Labeling Listeria with anaerobic fluorescent protein for food safety studies. Journal of Dairy Science, 2017, 100, 113-117.	1.4	6
35	Fluorescent Lactic Acid Bacteria and Bifidobacteria as Vehicles of DNA Microbial Biosensors. International Journal of Molecular Sciences, 2017, 18, 1728.	1.8	2
36	Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens. BioMed Research International, 2017, 2017, 1-10.	0.9	53

#	Article	IF	CITATIONS
37	Phytoestrogen Metabolism by Adult Human Gut Microbiota. Molecules, 2016, 21, 1034.	1.7	100
38	Effector Molecules and Regulatory Proteins: Applications. Trends in Biotechnology, 2016, 34, 777-780.	4.9	14
39	Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria. World Journal of Microbiology and Biotechnology, 2016, 32, 119.	1.7	22
40	Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. International Journal of Food Sciences and Nutrition, 2016, 67, 117-124.	1.3	51
41	A New HPLC-PAD/HPLC-ESI-MS Method for the Analysis of Phytoestrogens Produced by Bacterial Metabolism. Food Analytical Methods, 2016, 9, 537-547.	1.3	27
42	Bioactivation of Phytoestrogens: Intestinal Bacteria and Health. Critical Reviews in Food Science and Nutrition, 2016, 56, 1826-1843.	5.4	148
43	Gut Catalase-Positive Bacteria Cross-Protect Adjacent Bifidobacteria from Oxidative Stress. Microbes and Environments, 2015, 30, 270-272.	0.7	6
44	Antimicrobial Activity of Lactic Acid Bacteria in Dairy Products and Gut: Effect on Pathogens. BioMed Research International, 2015, 2015, 1-9.	0.9	144
45	Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Applied Microbiology and Biotechnology, 2015, 99, 6865-6877.	1.7	42
46	A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters. Applied and Environmental Microbiology, 2015, 81, 3235-3242.	1.4	75
47	Effect of soaking and fermentation on content of phenolic compounds of soybean (<i>Glycine max</i>) Tj ETQq1 and Nutrition, 2015, 66, 203-209.	1 0.78431 1.3	l 4 rgBT /Ove 27
48	Analysis of gene expression of bifidobacteria using as the reporter an anaerobic fluorescent protein. Biotechnology Letters, 2015, 37, 1405-1413.	1.1	12
49	Glycerol and cobalamin metabolism in lactobacilli: relevance of the propanediol dehydrogenase pdh30. European Food Research and Technology, 2015, 241, 173-184.	1.6	4
50	Anaerobic green fluorescent protein as a marker of Bifidobacterium strains. International Journal of Food Microbiology, 2014, 175, 6-13.	2.1	41
51	An improved method for the electrotransformation of lactic acid bacteria: A comparative survey. Journal of Microbiological Methods, 2014, 105, 130-133.	0.7	41
52	Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. Journal of Functional Foods, 2014, 7, 322-329.	1.6	74
53	In situ reuterin production by Lactobacillus reuteri in dairy products. Food Control, 2013, 33, 200-206.	2.8	56
54	Dietary Intake of Natural Antioxidants: Vitamins and Polyphenols. Critical Reviews in Food Science and Nutrition, 2013, 53, 706-721.	5.4	148

#	Article	IF	CITATIONS
55	Malic Enzyme and Malolactic Enzyme Pathways Are Functionally Linked but Independently Regulated in Lactobacillus casei BL23. Applied and Environmental Microbiology, 2013, 79, 5509-5518.	1.4	45
56	Tyramine and Phenylethylamine Biosynthesis by Food Bacteria. Critical Reviews in Food Science and Nutrition, 2012, 52, 448-467.	5.4	139
57	Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Research International, 2012, 46, 410-424.	2.9	202
58	Antimicrobial properties of probiotic strains isolated from breast-fed infants. Journal of Functional Foods, 2012, 4, 542-551.	1.6	63
59	PCR methods for the detection of biogenic amine-producing bacteria on wine. Annals of Microbiology, 2011, 61, 159-166.	1.1	21
60	Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 617-624.	1.4	55
61	Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chemistry, 2010, 120, 225-229.	4.2	71
62	Requirement of the <i>Lactobacillus casei</i> MaeKR Two-Component System for <scp>l</scp> -Malic Acid Utilization via a Malic Enzyme Pathway. Applied and Environmental Microbiology, 2010, 76, 84-95.	1.4	59
63	Degradation of Phenolic Compounds Found in Olive Products by Lactobacillus plantarum Strains. , 2010, , 387-396.		8
64	The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase. International Microbiology, 2010, 13, 169-77.	1.1	28
65	Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 2009, 132, 79-90.	2.1	494
66	Characterization of a Nitroreductase with Selective Nitroreduction Properties in the Food and Intestinal Lactic Acid Bacterium Lactobacillus plantarum WCFS1. Journal of Agricultural and Food Chemistry, 2009, 57, 10457-10465.	2.4	27
67	Molecular Screening of Wine Lactic Acid Bacteria Degrading Hydroxycinnamic Acids. Journal of Agricultural and Food Chemistry, 2009, 57, 490-494.	2.4	54
68	Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chemistry, 2008, 107, 320-326.	4.2	84
69	Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chemistry, 2008, 107, 1393-1398.	4.2	134
70	Updated Molecular Knowledge about Histamine Biosynthesis by Bacteria. Critical Reviews in Food Science and Nutrition, 2008, 48, 697-714.	5.4	117
71	Characterization of the <i>p</i> -Coumaric Acid Decarboxylase from Lactobacillus plantarum CECT 748 ^T . Journal of Agricultural and Food Chemistry, 2008, 56, 3068-3072.	2.4	81
72	Characterization of a Benzyl Alcohol Dehydrogenase from Lactobacillus plantarum WCFS1. Journal of Agricultural and Food Chemistry, 2008, 56, 4497-4503.	2.4	15

#	Article	IF	CITATIONS
73	Characterization of a Second Ornithine Decarboxylase Isolated from Morganella morganii. Journal of Food Protection, 2008, 71, 657-661.	0.8	20
74	Expression of plasminogen activator inhibitors type 1 and type 3 and urokinase plasminogen activator protein and mRNA in breast cancer. Thrombosis Research, 2007, 120, 753-762.	0.8	30
75	High-Added-Value Antioxidants Obtained from the Degradation of Wine Phenolics by Lactobacillus plantarum. Journal of Food Protection, 2007, 70, 2670-2675.	0.8	50
76	Tyramine and phenylethylamine production among lactic acid bacteria isolated from wine. International Journal of Food Microbiology, 2007, 115, 364-368.	2.1	53
77	Molecular methods for the detection of biogenic amine-producing bacteria on foods. International Journal of Food Microbiology, 2007, 117, 258-269.	2.1	195
78	Histamine, histidine, and growth-phase mediated regulation of the histidine decarboxylase gene in lactic acid bacteria isolated from wine. FEMS Microbiology Letters, 2006, 260, 84-90.	0.7	40
79	Biogenic Amines in Wines from Three Spanish Regions. Journal of Agricultural and Food Chemistry, 2005, 53, 1119-1124.	2.4	173
80	Distribution of calcitonin gene-related peptide-like immunoreactivity in the brain of the lizardPodarcis hispanica. Journal of Comparative Neurology, 2002, 447, 99-113.	0.9	16
81	Distribution of CGRP-like immunoreactivity in the chick and quail brain. , 2000, 421, 515-532.		41