## Peeyush Nandwana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4859858/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Progress<br>in Materials Science, 2021, 119, 100707.                                                                                                                                                                            | 32.8 | 412       |
| 2  | Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by<br>electron beam melting (EBM). Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2017, 685, 417-428.                                                                 | 5.6  | 272       |
| 3  | Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Additive Manufacturing, 2016, 10, 47-57.                                                                                                                                                         | 3.0  | 224       |
| 4  | Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challengesâ~†. Current Opinion in Solid State and Materials Science, 2017, 21, 207-218.                                                                                                                                      | 11.5 | 153       |
| 5  | A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing. International Journal of Fatigue, 2019, 119, 173-184.                                                                                                                                                             | 5.7  | 149       |
| 6  | Recyclability Study on Inconel 718 and Ti-6Al-4V Powders for Use in Electron Beam Melting.<br>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,<br>2016, 47, 754-762.                                                                                                        | 2.1  | 108       |
| 7  | A defect-resistant Co–Ni superalloy for 3D printing. Nature Communications, 2020, 11, 4975.                                                                                                                                                                                                                                 | 12.8 | 107       |
| 8  | Solidification and solid-state transformation sciences in metals additive manufacturing. Scripta<br>Materialia, 2017, 135, 130-134.                                                                                                                                                                                         | 5.2  | 90        |
| 9  | Powder bed charging during electron-beam additive manufacturing. Acta Materialia, 2017, 124, 437-445.                                                                                                                                                                                                                       | 7.9  | 69        |
| 10 | In situ nitrided titanium alloys: Microstructural evolution during solidification and wear. Acta<br>Materialia, 2015, 83, 61-74.                                                                                                                                                                                            | 7.9  | 67        |
| 11 | Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy. Scripta Materialia, 2016,<br>123, 144-148.                                                                                                                                                                                                    | 5.2  | 57        |
| 12 | Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V. Jom, 2016, 68, 772-777.                                                                                                                                                                                                                                | 1.9  | 55        |
| 13 | Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method. Additive Manufacturing, 2019, 28, 333-343.                                                                                                                                                                    | 3.0  | 48        |
| 14 | Build orientation, surface roughness, and scan path influence on the microstructure, mechanical<br>properties, and flexural fatigue behavior of Ti–6Al–4V fabricated by electron beam melting. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020,<br>772, 138740. | 5.6  | 42        |
| 15 | Formation of equiaxed alpha and titanium nitride precipitates in spark plasma sintered TiB/Ti–6Al–4V<br>composites. Materials Letters, 2012, 83, 202-205.                                                                                                                                                                   | 2.6  | 40        |
| 16 | Electron beam melting of Inconel 718: Effects of processing and post-processing. Materials Science and Technology, 2018, 34, 612-619.                                                                                                                                                                                       | 1.6  | 37        |
| 17 | Correlation of Microstructure to Creep Response of Hot Isostatically Pressed and Aged Electron<br>Beam Melted Inconel 718. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2018, 49, 5107-5117.                                                                                   | 2.2  | 36        |
| 18 | Correlations Between Powder Feedstock Quality, In Situ Porosity Detection, and Fatigue Behavior of<br>Ti-6Al-4V Fabricated by Powder Bed Electron Beam Melting: A Step Towards Qualification. Jom, 2018, 70,<br>1686-1691.                                                                                                  | 1.9  | 29        |

| #  | Article                                                                                                                                                                                                                                                                     | IF         | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 19 | Post-processing to Modify the α Phase Micro-Texture and β Phase Grain Morphology in Ti-6Al-4V<br>Fabricated by Powder Bed Electron Beam Melting. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2019, 50, 3429-3439.             | 2.2        | 28        |
| 20 | The effect of beam scan strategies on microstructural variations in Ti-6Al-4V fabricated by electron beam powder bed fusion. Materials and Design, 2020, 196, 109165.                                                                                                       | 7.0        | 28        |
| 21 | Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V<br>Manufactured with Powder Bed Electron Beam Additive Manufacturing. Jom, 2017, 69, 472-478.                                                                               | 1.9        | 27        |
| 22 | Effect of Interlayer Cooling Time, Constraint and Tool Path Strategy on Deformation of Large<br>Components Made by Laser Metal Deposition with Wire. Applied Sciences (Switzerland), 2019, 9, 5115.                                                                         | 2.5        | 26        |
| 23 | Influence of scan strategy on porosity and microstructure of Ti-6Al-4V fabricated by electron beam powder bed fusion. Materials Today Communications, 2020, 24, 100962.                                                                                                     | 1.9        | 22        |
| 24 | On the potential mechanisms of β to α′ + β decomposition in two phase titanium alloys during addit<br>manufacturing: a combined transmission Kikuchi diffraction and 3D atom probe study. Journal of<br>Materials Science, 2020, 55, 1715-1726.                             | ive<br>3.7 | 21        |
| 25 | A first principles study of commonly observed planar defects in Ti/TiB system. Computational<br>Materials Science, 2018, 150, 197-201.                                                                                                                                      | 3.0        | 19        |
| 26 | Laser surface modification for synthesis of textured bioactive and biocompatible Ca–P coatings on<br>Ti–6Al–4V. Journal of Materials Science: Materials in Medicine, 2011, 22, 1393-1406.                                                                                   | 3.6        | 18        |
| 27 | Investigating the effect of metal powder recycling in Electron beam Powder Bed Fusion using process<br>log data. Additive Manufacturing, 2020, 32, 100994.                                                                                                                  | 3.0        | 17        |
| 28 | Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion.<br>Additive Manufacturing, 2021, 37, 101723.                                                                                                                          | 3.0        | 17        |
| 29 | Powder spreading, densification, and part deformation in binder jetting additive manufacturing.<br>Progress in Additive Manufacturing, 2022, 7, 111-125.                                                                                                                    | 4.8        | 16        |
| 30 | High temperature high strength austenitic steel fabricated by laser powder-bed fusion. Acta<br>Materialia, 2022, 231, 117876.                                                                                                                                               | 7.9        | 16        |
| 31 | Texture evolution during processing and post-processing of maraging steel fabricated by laser powder bed fusion. Scientific Reports, 2022, 12, 6396.                                                                                                                        | 3.3        | 14        |
| 32 | Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser<br>powder bed fusion (LPBF). Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2021, 817, 141266.                | 5.6        | 13        |
| 33 | Texture evolution as a function of scan strategy and build height in electron beam melted Ti-6Al-4V.<br>Additive Manufacturing, 2021, 46, 102118.                                                                                                                           | 3.0        | 12        |
| 34 | Implications of post-processing induced microstructural changes on the deformation and fracture<br>response of additively manufactured Ti–6Al–4V. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2020, 795, 139986. | 5.6        | 10        |
| 35 | Microstructure evolution during binder jet additive manufacturing of H13 tool steel. Additive Manufacturing, 2020, 36, 101534.                                                                                                                                              | 3.0        | 10        |
| 36 | Role of thermo-mechanical gyrations on the $\hat{l}\pm/\hat{l}^2$ interface stability in a Ti6Al4V AM alloy. Scripta Materialia, 2021, 204, 114134.                                                                                                                         | 5.2        | 10        |

**PEEYUSH NANDWANA** 

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Predicting sintering window during supersolidus liquid phase sintering of steels using feedstock analysis and CALPHAD. Materials Letters, 2021, 304, 130648.                                                                     | 2.6 | 9         |
| 38 | Predicting geometric influences in metal additive manufacturing. Materials Today Communications, 2020, 25, 101174.                                                                                                               | 1.9 | 8         |
| 39 | Leveraging Solute Segregation in Laser Powder Bed Fusion to Achieve Superior Strength and Ductility<br>Via Single-Step Heat Treatment in Ti-Free Grade 300 Maraging Steel. Jom, 2020, 72, 4221-4231.                             | 1.9 | 7         |
| 40 | Dynamic phase transformations in additively manufactured Ti-6Al-4V during thermo-mechanical gyrations. Materialia, 2020, 14, 100883.                                                                                             | 2.7 | 7         |
| 41 | Progress in the Processing and Understanding of Alloy 718 Fabricated Through Powder Bed Additive<br>Manufacturing Processes. Minerals, Metals and Materials Series, 2018, , 69-88.                                               | 0.4 | 6         |
| 42 | Insights into the Transformation-Induced Plasticity (TRIP) Effect in Ti-Free Grade 300 Maraging Steel<br>Manufactured by Laser Powder Bed Fusion (LPBF). Jom, 2020, 72, 4187-4195.                                               | 1.9 | 4         |
| 43 | Thermodynamics and kinetics of precipitation and austenite reversion during aging of Ti-free grade<br>300 maraging steel manufactured by laser powder bed fusion (LPBF). Journal of Materials Science, 2021,<br>56, 18722-18739. | 3.7 | 4         |
| 44 | Solidification texture, variant selection, and phase fraction in a spot-melt electron-beam powder bed fusion processed Ti-6Al-4V. Additive Manufacturing, 2021, 46, 102136.                                                      | 3.0 | 4         |
| 45 | Data Mining and Visualization of High-Dimensional ICME Data for Additive Manufacturing. Integrating<br>Materials and Manufacturing Innovation, 2022, 11, 57-70.                                                                  | 2.6 | 4         |
| 46 | Multi-scale characterization of supersolidus liquid phase sintered H13 tool steel manufactured via binder jet additive manufacturing. Additive Manufacturing, 2022, , 102834.                                                    | 3.0 | 4         |
| 47 | Binder Jet-Metals. , 2022, , 120-133.                                                                                                                                                                                            |     | 2         |
|    |                                                                                                                                                                                                                                  |     |           |

48 Additive Manufacturing of Tool Steels. , 2020, , 366-373.

1