List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4859610/publications.pdf Version: 2024-02-01

		117625	168389
133	3,741	34	53
papers	citations	h-index	g-index
133	133	133	4350
all docs	docs citations	times ranked	citing authors

IIANVI SHEN

#	Article	IF	CITATIONS
1	Ionic Liquid-Assisted Synthesis of Vanadium Phosphate Catalysts from Phosphorous Acid for Selective Oxidation Reactions. Catalysis Letters, 2021, 151, 2366.	2.6	1
2	Microcalorimetric adsorption and infrared spectroscopic studies of supported Pd, Ru and Pd–Ru catalysts for the hydrogenation of aromatic rings with carboxyl groups. Catalysis Science and Technology, 2021, 11, 3070-3083.	4.1	12
3	Understanding the effects of solvents on the hydrogenation of toluene over supported Pd and Ru catalysts. Catalysis Communications, 2021, 157, 106330.	3.3	14
4	Tuning the sorption ability of hydroxyapatite/carbon composites for the simultaneous remediation of wastewaters containing organic-inorganic pollutants. Journal of Hazardous Materials, 2021, 420, 126656.	12.4	15
5	Effects of surface functional groups of the N-containing carbon support on the catalytic properties of supported palladium. Microporous and Mesoporous Materials, 2021, 327, 111400.	4.4	3
6	Preparation of high surface area mesoporous melamine formaldehyde resins. Microporous and Mesoporous Materials, 2020, 309, 110591.	4.4	10
7	Hydrodeoxygenation of Guaiacol Catalyzed by ZrO ₂ –CeO ₂ -Supported Nickel Catalysts with High Loading. Energy & Fuels, 2020, 34, 4685-4692.	5.1	21
8	High-Loading Nickel Phosphide Catalysts Supported on SiO ₂ –TiO ₂ for Hydrodeoxygenation of Guaiacol. Energy & Fuels, 2019, 33, 7696-7704.	5.1	28
9	Highly Loaded and Dispersed Cobalt Catalysts for the Hydrogenation of Toluene with Triethylamine. Industrial & Engineering Chemistry Research, 2019, 58, 19456-19464.	3.7	6
10	Effects of acetone on the hydrogenation of diisopropylimine over supported nickel catalysts. Catalysis Communications, 2019, 122, 24-27.	3.3	7
11	Selective Synthesis of Bisphenol F from Phenol and PODE ₂ over an Acidic Resin–Carbon Composite Material. Industrial & Engineering Chemistry Research, 2019, 58, 9223-9230.	3.7	1
12	Synthesis of nickel phosphide nanorods for hydrotreating reactions. Catalysis Communications, 2019, 124, 67-70.	3.3	4
13	Hydrodeoxygenation of Guaiacol Catalyzed by High-Loading Ni Catalysts Supported on SiO ₂ –TiO ₂ Binary Oxides. Industrial & Engineering Chemistry Research, 2019, 58, 1513-1524.	3.7	55
14	Preparation of Fe2P/Al2O3 and FeP/Al2O3 catalysts for the hydrotreating reactions. Journal of Energy Chemistry, 2019, 29, 116-121.	12.9	8
15	Effect of surface acidity/basicity on the selective hydrogenation of maleic anhydride to succinic anhydride over supported nickel catalysts. Catalysis Communications, 2018, 110, 93-96.	3.3	19
16	Microcalorimetric adsorption and infrared spectroscopic studies of supported nickel catalysts for the hydrogenation of diisopropylimine to diisopropylamine. Journal of Catalysis, 2018, 362, 35-45.	6.2	17
17	Effect of Ethylamines on the Hydrogenation of Toluene over Supported Nickel Catalysts. Industrial & Engineering Chemistry Research, 2018, , .	3.7	1
18	Hydrogenation of Diisopropylimine over Mesoporous Carbon Supported Metal Catalysts. Industrial & & & & & & & & & & & & & & & & & & &	3.7	4

#	Article	IF	CITATIONS
19	On the nature of spillover hydrogen species on platinum/nitrogen-doped mesoporous carbon composites: A temperature-programmed nitrobenzene desorption study. Journal of Catalysis, 2018, 365, 55-62.	6.2	35
20	Decomposition of polyoxymethylene dimethyl ethers and synthesis of bisphenol F. Catalysis Today, 2017, 298, 263-268.	4.4	13
21	Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst. Journal of Catalysis, 2017, 350, 141-148.	6.2	42
22	Preparation of Fe2P and FeP catalysts for the hydrotreating reactions. Catalysis Communications, 2017, 100, 202-205.	3.3	13
23	Hydrodeoxygenation of Guaiacol on Ru Catalysts: Influence of TiO ₂ –ZrO ₂ Composite Oxide Supports. Industrial & Engineering Chemistry Research, 2017, 56, 12070-12079.	3.7	56
24	Preparation of NiAlO x and NiSiO x Complex Oxides with High Surface Areas for the Isomerization Reactions of 1-Hexene. Catalysis Letters, 2016, 146, 1934-1942.	2.6	6
25	Formation and self-assembly of 3D nanofibrous networks based on oppositely charged jets. Materials and Design, 2016, 97, 126-130.	7.0	34
26	Optimization of MgO/Al 2 O 3 ratio for the maximization of active site densities in the Ni 2 P/MgAlO catalysts for the hydrotreating reactions. Journal of Energy Chemistry, 2016, 25, 571-576.	12.9	4
27	Preparation of hydrothermally stable, basic, and highly active nano nickel catalysts for the hydrodeoxygenation of N,N-dimethylformamide. Journal of Catalysis, 2016, 338, 1-11.	6.2	22
28	Preparation of highly active and hydrothermally stable nickel catalysts. Journal of Colloid and Interface Science, 2015, 447, 68-76.	9.4	19
29	Highly Efficient Photocatalysts for Surface Hybridization of TiO ₂ Nanofibers with Carbon Films. ChemPlusChem, 2015, 80, 827-831.	2.8	5
30	Hydrogenation induced deviation of temperature and concentration dependences of polymer-solvent interactions in poly(vinyl chloride) and a new eco-friendly plasticizer. European Physical Journal Plus, 2015, 130, 1.	2.6	2
31	Effects of water on the hydrogenation of acetone over Ni/MgAlO catalysts. Chinese Journal of Catalysis, 2015, 36, 380-388.	14.0	25
32	Effect of supports on the supported Ni2P catalysts prepared by the phosphidation using triphenylphosphine in liquid phase. Chemical Engineering Journal, 2015, 275, 89-101.	12.7	18
33	Influence of N addition in mesoporous carbons used as supports of Pt, Pd and Ru for toluene hydrogenation and iron oxide for benzene oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 263-282.	1.7	10
34	Effect of ZrO ₂ in Ni ₂ P/ZrO ₂ –Al ₂ O ₃ catalysts on hydrotreating reactions. RSC Advances, 2015, 5, 74312-74319.	3.6	7
35	Effect of loading on the Ni2P/Al2O3 catalysts for the hydrotreating reactions. Journal of Energy Chemistry, 2015, 24, 441-447.	12.9	4
36	Synthesis of high-surface-area Co-O-Si complex oxide for skeletal isomerization of 1-hexene and hydrodesulfurization of thiophene. Chinese Journal of Catalysis, 2014, 35, 1402-1409.	14.0	6

#	Article	IF	CITATIONS
37	Study of Phenol and Nicotine Adsorption on Nitrogen-Modified Mesoporous Carbons. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	17
38	Sulfonated carbon materials with hydrophilic and lipophilic properties. Journal of Energy Chemistry, 2014, 23, 156-163.	12.9	8
39	The strong interaction between poly(vinyl chloride) and a new eco-friendly plasticizer: A combined experiment and calculation study. Polymer, 2014, 55, 2831-2840.	3.8	13
40	Highly active Ni2P/SiO2 catalysts phosphorized by triphenylphosphine in liquid phase for the hydrotreating reactions. Applied Catalysis B: Environmental, 2014, 160-161, 344-355.	20.2	17
41	Effect of acidic promoters on the titania-nanotubes supported V2O5 catalysts for the selective oxidation of methanol to dimethoxymethane. Chinese Journal of Catalysis, 2013, 34, 2110-2117.	14.0	12
42	Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers. Journal of Energy Chemistry, 2013, 22, 833-836.	12.9	78
43	Microcalorimetric adsorption and infrared spectroscopic studies of KNi/MgAlO catalysts for the hydrogenation of acetonitrile. Journal of Catalysis, 2013, 298, 161-169.	6.2	28
44	Effect of Surface Acidic and Basic Properties of the Supported Nickel Catalysts on the Hydrogenation of Pyridine to Piperidine. Journal of Physical Chemistry C, 2013, 117, 10573-10580.	3.1	59
45	Morphology control of nanohelix by electrospinning. Applied Physics Letters, 2012, 101, .	3.3	13
46	The effect of surface acidic and basic properties of highly loaded Co catalysts on the Fischer–Tropsch synthesis. Catalysis Communications, 2012, 28, 155-158.	3.3	12
47	Effect of Resorcinol Formaldehyde Resin Gel on the Preparation of Co/SiO2 Catalysts for Fischer-Tropsch Synthesis. Chinese Journal of Catalysis, 2012, 33, 621-628.	14.0	7
48	The effect of surface acidic and basic properties on the hydrogenation of lauronitrile over the supported nickel catalysts. Chemical Engineering Journal, 2012, 181-182, 677-684.	12.7	32
49	The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer–Tropsch synthesis. Journal of Colloid and Interface Science, 2012, 368, 456-461.	9.4	22
50	Mesoporous Carbon Supported Pd Catalysts for the Hydrogenation of β-Sitosterol to β-Sitostanol. Chinese Journal of Catalysis, 2011, 32, 1771-1781.	14.0	3
51	Preparation of highly loaded and dispersed Ni/SiO2 catalysts. Catalysis Communications, 2011, 12, 332-336.	3.3	29
52	Preparation of Highly Loaded and Active Ni/Al2O3 Catalysts for the Hydrogenation of Aromatic Rings. Chinese Journal of Catalysis, 2011, 32, 917-925.	14.0	25
53	Microcalorimetric adsorption studies of highly loaded Co–ZrO2/SiO2 catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 2011, 279, 246-256.	6.2	18
54	Nitrogen-containing mesoporous carbons prepared from melamine formaldehyde resins with CaCl2 as a template. Journal of Colloid and Interface Science, 2011, 363, 193-198.	9.4	51

#	Article	IF	CITATIONS
55	Hydrogenation of dioctyl phthalate over supported Ni catalysts. Catalysis Communications, 2011, 16, 30-34.	3.3	32
56	Synthesis of nickel phosphide nano-particles in a eutectic mixture for hydrotreating reactions. Journal of Materials Chemistry, 2011, 21, 8137.	6.7	70
57	Helical Nanoribbons Fabricated by Electrospinning. Macromolecular Materials and Engineering, 2011, 296, 1071-1074.	3.6	22
58	High Electron Transfer Efficiency of Titania Dioxide Nanotube for Low Potential Electrochemiluminescent Biosensing. Electroanalysis, 2011, 23, 2629-2632.	2.9	12
59	A highly loaded and dispersed Ni2P/SiO2 catalyst for the hydrotreating reactions. Applied Catalysis B: Environmental, 2011, 104, 229-233.	20.2	29
60	Preparation of Acidic Resin-Carbon Composite Material through the Sulfonation and Carbonization of Polyphenyl. Chinese Journal of Catalysis, 2011, 32, 688-692.	14.0	2
61	Preparation and characterization of thermally stable high surface area mesoporous vanadium oxides. Microporous and Mesoporous Materials, 2010, 131, 37-44.	4.4	17
62	Dispersion of Nano Nickel Particles over SBA-15 Modified by Carbon Films on Pore Walls. Catalysis Letters, 2010, 134, 93-101.	2.6	11
63	Surface Properties of Ni/MgO Catalysts for the Hydrogenation of Lauronitrile. Catalysis Letters, 2010, 135, 246-255.	2.6	22
64	Nature of surface sites of V2O5–TiO2/SO42- catalysts and reactivity in selective oxidation of methanol to dimethoxymethane. Journal of Catalysis, 2010, 272, 176-189.	6.2	107
65	Fabrication of Microropes via Biâ€electrospinning with a Rotating Needle Collector. Macromolecular Rapid Communications, 2010, 31, 2151-2154.	3.9	26
66	Influence of the host oxide of sulfated-titania catalysts on partial oxidation methanol reaction. Applied Catalysis A: General, 2010, 385, 224-231.	4.3	9
67	Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation. Journal of Magnetism and Magnetic Materials, 2010, 322, 3084-3087.	2.3	12
68	Preparation and characterization of V-Ag-O catalysts for the selective oxidation of toluene. Applied Catalysis A: General, 2010, 379, 7-14.	4.3	22
69	The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts. Chemical Engineering Journal, 2010, 162, 371-379.	12.7	74
70	Mesoporous Carbon Supported Co-Mo and Ni-Mo Catalysts for Hydrodesulfurization. Chinese Journal of Catalysis, 2010, 31, 961-964.	14.0	7
71	Preparation of a novel sulfonated carbon catalyst for the etherification of isopentene with methanol to produce tert-amyl methyl ether. Catalysis Communications, 2010, 11, 824-828.	3.3	30
72	Surface Acidic and Redox Properties of V–Ag–O/TiO2 Catalysts for the Selective Oxidation of Toluene to Benzaldehyde. Catalysis Letters, 2009, 128, 373-378.	2.6	19

#	Article	IF	CITATIONS
73	Characterization and Catalytic Activities of Al2O3-Promoted Sulfated Tin Oxides. Catalysis Letters, 2009, 133, 119-124.	2.6	12
74	Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2–Cu2O under visible irradiation. Journal of Hazardous Materials, 2009, 168, 215-219.	12.4	73
75	Hydroisomerization of model FCC naphtha over sulfided Co(Ni)–Mo(W)/MCM-41 catalysts. Microporous and Mesoporous Materials, 2009, 120, 339-345.	4.4	27
76	Preparation and characterization of mesoporous VOx–TiO2 complex oxides for the selective oxidation of methanol to dimethoxymethane. Journal of Colloid and Interface Science, 2009, 335, 216-221.	9.4	37
77	New synthesis method for nickel phosphide nanoparticles: solid phase reaction of nickel cations with hypophosphites. Journal of Materials Chemistry, 2009, 19, 2295.	6.7	68
78	Skeletal Isomerization of 1-Hexene over Sulfided Co/Co-MCM-41 Catalysts. Energy & Fuels, 2009, 23, 320-326.	5.1	12
79	Mesoporous carbon materials prepared from carbohydrates with a metal chloride template. Journal of Materials Chemistry, 2009, 19, 7759.	6.7	49
80	Mesoporous carbon supported nickel phosphide catalysts prepared by solid phase reaction. Catalysis Communications, 2009, 10, 1693-1696.	3.3	24
81	Effect of silica on the selective oxidation of methanol to dimethoxymethane over vanadia–titania catalysts. Catalysis Communications, 2009, 11, 47-50.	3.3	17
82	Preparation of Mesoporous V–Ce–Ti–O for the Selective Oxidation of Methanol to Dimethoxymethane. Catalysis Letters, 2008, 126, 155-163.	2.6	11
83	Structural, acidic and redox properties of V2O5-TiO2-SO42â^' catalysts. Applied Catalysis A: General, 2008, 334, 26-34.	4.3	72
84	TiO2 nanotubes supported V2O5 for the selective oxidation of methanol to dimethoxymethane. Microporous and Mesoporous Materials, 2008, 116, 614-621.	4.4	47
85	High surface area carbons as acidic components with Cu–ZnO/Al2O3 for the reforming of dimethoxymethane. Catalysis Communications, 2008, 9, 801-806.	3.3	12
86	Effect of Solvents on the Hydrogenation and Isomerization of 1-Hexene over Sulfided Coâ^'Mo/γ-Al ₂ O ₃ Catalysts for Hydrodesulfurization. Energy & Fuels, 2008, 22, 2450-2454.	5.1	10
87	Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity. Chemical Communications, 2007, , 2172.	4.1	77
88	Dispersion of magnetic metals on expanded graphite for the shielding of electromagnetic radiations. Applied Physics Letters, 2007, 90, 133117.	3.3	17
89	Tribological and mechanical properties of carbon-nanofiber-filled polytetrafluoroethylene composites. Journal of Applied Polymer Science, 2007, 104, 2430-2437.	2.6	38
90	Structural, acidic and redox properties of V2O5/NbP catalysts. Applied Catalysis A: General, 2007, 327, 218-225.	4.3	11

#	Article	IF	CITATIONS
91	Surface acidic and redox properties of V-Ag-Ni-O catalysts for the selective oxidation of toluene to benzaldehyde. Applied Catalysis A: General, 2007, 330, 117-126.	4.3	42
92	Surface acidic and redox properties of V-Zr-O catalysts for the selective oxidation of toluene to benzaldehyde. Journal of Molecular Catalysis A, 2007, 278, 209-214.	4.8	19
93	Dehydration of methanol to dimethyl ether over Nb2O5 and NbOPO4 catalysts: Microcalorimetric and FT-IR studies. Journal of Molecular Catalysis A, 2007, 275, 183-193.	4.8	62
94	Structural, redox and acid–base properties of V2O5/CeO2 catalysts. Thermochimica Acta, 2006, 451, 84-93.	2.7	58
95	Reduction of Ni2+ by hydrazine in solution for the preparation of nickel nano-particles. Journal of Materials Science, 2006, 41, 3473-3480.	3.7	37
96	Surface acidity of niobium phosphate and steam reforming of dimethoxymethane over CuZnO/Al2O3–NbP complex catalysts. Journal of Catalysis, 2006, 244, 1-9.	6.2	51
97	Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4′-diaminodiphenylmethane/4,4′-diaminodiphenylsulfone epoxy composites. Journal of Applied Polymer Science, 2006, 100, 295-298.	2.6	34
98	Surface acidity and the dehydration of methanol to dimethyl ether. Thermochimica Acta, 2005, 434, 22-26.	2.7	148
99	Characterization of acidic and redox properties of Ce–Mo–O catalysts for the selective oxidation of toluene. Thermochimica Acta, 2005, 434, 50-54.	2.7	27
100	Thermal decomposition of dimethoxymethane and dimethyl carbonate catalyzed by solid acids and bases. Thermochimica Acta, 2005, 434, 88-92.	2.7	73
101	Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC. Journal of Applied Polymer Science, 2005, 96, 329-335.	2.6	59
102	Modification of Cr/SiO2 for the dehydrogenation of propane to propylene in carbon dioxide. Reaction Kinetics and Catalysis Letters, 2005, 85, 253-260.	0.6	18
103	The determination of acidity in fluid cracking catalysts (FCCs) from adsorption microcalorimetry of probe molecules. Studies in Surface Science and Catalysis, 2004, 149, 35-70.	1.5	15
104	Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3701-3712.	2.1	134
105	Microkinetic analysis for the selective oxidation of propylene to acetone over vanadia/titania. Applied Catalysis A: General, 2003, 246, 351-363.	4.3	6
106	A Mössbauer study of In–Fe2O3/HZSM-5 catalysts for the selective catalytic reduction of NO by methane. Physical Chemistry Chemical Physics, 2002, 4, 2846-2851.	2.8	17
107	Microcalorimetric Adsorption Characterizations of Supported Vanadia Catalysts for the Selective Oxidation of Propylene to Acetone. Journal of Catalysis, 2002, 205, 248-258.	6.2	38
108	Title is missing!. Reaction Kinetics and Catalysis Letters, 2002, 77, 103-108.	0.6	38

#	Article	IF	CITATIONS
109	Microcalorimetric studies of O2 and C2H4 adsorption on Pd/SiO2 catalysts modified by Cu and Ag. Thermochimica Acta, 2001, 379, 45-50.	2.7	27
110	Characterization and catalytic performance of supported molybdophosphoric acid catalysts for the oxidation of propylene to acetone. Applied Catalysis A: General, 2001, 206, 161-169.	4.3	26
111	Selective Oxidation of Propylene to Acetone over Supported Vanadia Catalysts. Reaction Kinetics and Catalysis Letters, 2001, 72, 263-267.	0.6	12
112	Microcalorimetric and infrared spectroscopic studies of CO and C2H4 adsorption on Pd/SiO2 and Pd–Ag/SiO2 catalysts. Materials Chemistry and Physics, 2001, 68, 204-209.	4.0	28
113	Microcalorimetric and infrared spectroscopic studies of Î ³ -Al2O3 modified by zinc oxide. Thermochimica Acta, 2000, 351, 165-170.	2.7	30
114	Microcalorimetric and infrared spectroscopic studies of C2H4 adsorption on Ni/SiO2 and NiBi/SiO2 catalysts. Thermochimica Acta, 2000, 345, 19-23.	2.7	6
115	Methane Aromatization in the Absence of Oxygen Over Mo/H[B]ZSM-5 Catalysts. Reaction Kinetics and Catalysis Letters, 2000, 70, 349-356.	0.6	9
116	Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pd and Pd/Sn Catalysts. Langmuir, 2000, 16, 2213-2219.	3.5	52
117	Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pt/SiO2 and Ptâ^'Sn/SiO2 Catalysts. Journal of Physical Chemistry B, 1999, 103, 3923-3934.	2.6	112
118	A study on the reduction behavior of silica supported iron and platinum-iron catalysts. Reaction Kinetics and Catalysis Letters, 1998, 64, 255-260.	0.6	1
119	Studies of the roles of Sn or Fe on γ-Al2O3-supported Pt catalysts by CO adsorption microcalorimetry and dehydrogenation reaction of C4 alkanes. Science in China Series B: Chemistry, 1998, 41, 606-615.	0.8	7
120	Formation of Surface Basicity through the Decomposition of Alkali Metal Nitrates on γ-Al2O3. Langmuir, 1998, 14, 2756-2760.	3.5	7
121	A Preferable Probe Molecule for Evaluating the Surface Acidic Properties of Sulfated Zirconium and Iron Oxides by Microcalorimetric Adsorption Measurement. Chemistry Letters, 1998, 27, 1179-1180.	1.3	3
122	Title is missing!. Journal of Materials Science, 1997, 32, 749-753.	3.7	9
123	Microcalorimetric Studies of Surface Acid/Base Properties of Magnesium Iron Catalysts Prepared from Hydrotalcite-Type Precursors. Journal of Solid State Chemistry, 1997, 128, 73-79.	2.9	18
124	Chemical reaction for the preparation of Ni-P ultrafine amorphous alloy particles from aqueous solution. Journal of Materials Science Letters, 1996, 15, 715-717.	0.5	21
125	Structural and Acid/Base Properties of Supported Europium Oxides. The Journal of Physical Chemistry, 1995, 99, 2384-2392.	2.9	41
126	Microcalorimetric and Infrared Spectroscopic Studies of .gammaAl2O3 Modified by Basic Metal Oxides. The Journal of Physical Chemistry, 1994, 98, 8067-8073.	2.9	96

#	Article	IF	CITATIONS
127	Preparation of Fe-B ultrafine amorphous alloy particles by the reaction of ferric chloride and potassium borohydride in aqueous solution. Journal of Materials Science Letters, 1994, 13, 1208-1210.	0.5	5
128	Formation of ultrafine amorphous alloy particles with uniform size by autocatalytic method. Journal of Materials Science Letters, 1993, 12, 1020-1021.	0.5	15
129	Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles. The Journal of Physical Chemistry, 1993, 97, 8504-8511.	2.9	114
130	Surface state and catalytic activity of ultrafine amorphous NiB alloy particles prepared by chemical reduction. Journal of Materials Science Letters, 1993, 12, 596-597.	0.5	2
131	Investigation of Ni–P–B ultrafine amorphous alloy particles produced by chemical reduction. Journal of Applied Physics, 1992, 71, 5217-5221.	2.5	37
132	A study of Feâ€Niâ€B ultrafine alloy particles produced by reduction with borohydride. Journal of Applied Physics, 1991, 70, 436-438.	2.5	34
133	The preparation of Niâ€P ultrafine amorphous alloy particles by chemical reduction. Applied Physics Letters, 1991, 59, 3545-3546.	3.3	25