List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4859610/publications.pdf Version: 2024-02-01

		117571	168321
133	3,741	34	53
papers	citations	h-index	g-index
133	133	133	4350
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface acidity and the dehydration of methanol to dimethyl ether. Thermochimica Acta, 2005, 434, 22-26.	1.2	148
2	Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3701-3712.	2.4	134
3	Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles. The Journal of Physical Chemistry, 1993, 97, 8504-8511.	2.9	114
4	Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pt/SiO2 and Ptâ^'Sn/SiO2 Catalysts. Journal of Physical Chemistry B, 1999, 103, 3923-3934.	1.2	112
5	Nature of surface sites of V2O5–TiO2/SO42- catalysts and reactivity in selective oxidation of methanol to dimethoxymethane. Journal of Catalysis, 2010, 272, 176-189.	3.1	107
6	Microcalorimetric and Infrared Spectroscopic Studies of .gammaAl2O3 Modified by Basic Metal Oxides. The Journal of Physical Chemistry, 1994, 98, 8067-8073.	2.9	96
7	Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers. Journal of Energy Chemistry, 2013, 22, 833-836.	7.1	78
8	Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity. Chemical Communications, 2007, , 2172.	2.2	77
9	The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts. Chemical Engineering Journal, 2010, 162, 371-379.	6.6	74
10	Thermal decomposition of dimethoxymethane and dimethyl carbonate catalyzed by solid acids and bases. Thermochimica Acta, 2005, 434, 88-92.	1.2	73
11	Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2–Cu2O under visible irradiation. Journal of Hazardous Materials, 2009, 168, 215-219.	6.5	73
12	Structural, acidic and redox properties of V2O5-TiO2-SO42â^' catalysts. Applied Catalysis A: General, 2008, 334, 26-34.	2.2	72
13	Synthesis of nickel phosphide nano-particles in a eutectic mixture for hydrotreating reactions. Journal of Materials Chemistry, 2011, 21, 8137.	6.7	70
14	New synthesis method for nickel phosphide nanoparticles: solid phase reaction of nickel cations with hypophosphites. Journal of Materials Chemistry, 2009, 19, 2295.	6.7	68
15	Dehydration of methanol to dimethyl ether over Nb2O5 and NbOPO4 catalysts: Microcalorimetric and FT-IR studies. Journal of Molecular Catalysis A, 2007, 275, 183-193.	4.8	62
16	Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC. Journal of Applied Polymer Science, 2005, 96, 329-335.	1.3	59
17	Effect of Surface Acidic and Basic Properties of the Supported Nickel Catalysts on the Hydrogenation of Pyridine to Piperidine. Journal of Physical Chemistry C, 2013, 117, 10573-10580.	1.5	59
18	Structural, redox and acid–base properties of V2O5/CeO2 catalysts. Thermochimica Acta, 2006, 451, 84-93.	1.2	58

#	Article	IF	CITATIONS
19	Hydrodeoxygenation of Guaiacol on Ru Catalysts: Influence of TiO ₂ –ZrO ₂ Composite Oxide Supports. Industrial & Engineering Chemistry Research, 2017, 56, 12070-12079.	1.8	56
20	Hydrodeoxygenation of Guaiacol Catalyzed by High-Loading Ni Catalysts Supported on SiO ₂ –TiO ₂ Binary Oxides. Industrial & Engineering Chemistry Research, 2019, 58, 1513-1524.	1.8	55
21	Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pd and Pd/Sn Catalysts. Langmuir, 2000, 16, 2213-2219.	1.6	52
22	Surface acidity of niobium phosphate and steam reforming of dimethoxymethane over CuZnO/Al2O3–NbP complex catalysts. Journal of Catalysis, 2006, 244, 1-9.	3.1	51
23	Nitrogen-containing mesoporous carbons prepared from melamine formaldehyde resins with CaCl2 as a template. Journal of Colloid and Interface Science, 2011, 363, 193-198.	5.0	51
24	Mesoporous carbon materials prepared from carbohydrates with a metal chloride template. Journal of Materials Chemistry, 2009, 19, 7759.	6.7	49
25	TiO2 nanotubes supported V2O5 for the selective oxidation of methanol to dimethoxymethane. Microporous and Mesoporous Materials, 2008, 116, 614-621.	2.2	47
26	Surface acidic and redox properties of V-Ag-Ni-O catalysts for the selective oxidation of toluene to benzaldehyde. Applied Catalysis A: General, 2007, 330, 117-126.	2.2	42
27	Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst. Journal of Catalysis, 2017, 350, 141-148.	3.1	42
28	Structural and Acid/Base Properties of Supported Europium Oxides. The Journal of Physical Chemistry, 1995, 99, 2384-2392.	2.9	41
29	Microcalorimetric Adsorption Characterizations of Supported Vanadia Catalysts for the Selective Oxidation of Propylene to Acetone. Journal of Catalysis, 2002, 205, 248-258.	3.1	38
30	Title is missing!. Reaction Kinetics and Catalysis Letters, 2002, 77, 103-108.	0.6	38
31	Tribological and mechanical properties of carbon-nanofiber-filled polytetrafluoroethylene composites. Journal of Applied Polymer Science, 2007, 104, 2430-2437.	1.3	38
32	Investigation of Ni–P–B ultrafine amorphous alloy particles produced by chemical reduction. Journal of Applied Physics, 1992, 71, 5217-5221.	1.1	37
33	Reduction of Ni2+ by hydrazine in solution for the preparation of nickel nano-particles. Journal of Materials Science, 2006, 41, 3473-3480.	1.7	37
34	Preparation and characterization of mesoporous VOx–TiO2 complex oxides for the selective oxidation of methanol to dimethoxymethane. Journal of Colloid and Interface Science, 2009, 335, 216-221.	5.0	37
35	On the nature of spillover hydrogen species on platinum/nitrogen-doped mesoporous carbon composites: A temperature-programmed nitrobenzene desorption study. Journal of Catalysis, 2018, 365, 55-62.	3.1	35
36	A study of Feâ€Niâ€B ultrafine alloy particles produced by reduction with borohydride. Journal of Applied Physics, 1991, 70, 436-438.	1.1	34

#	Article	IF	CITATIONS
37	Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4′-diaminodiphenylmethane/4,4′-diaminodiphenylsulfone epoxy composites. Journal of Applied Polymer Science, 2006, 100, 295-298.	1.3	34
38	Formation and self-assembly of 3D nanofibrous networks based on oppositely charged jets. Materials and Design, 2016, 97, 126-130.	3.3	34
39	Hydrogenation of dioctyl phthalate over supported Ni catalysts. Catalysis Communications, 2011, 16, 30-34.	1.6	32
40	The effect of surface acidic and basic properties on the hydrogenation of lauronitrile over the supported nickel catalysts. Chemical Engineering Journal, 2012, 181-182, 677-684.	6.6	32
41	Microcalorimetric and infrared spectroscopic studies of \hat{I}^3 -Al2O3 modified by zinc oxide. Thermochimica Acta, 2000, 351, 165-170.	1.2	30
42	Preparation of a novel sulfonated carbon catalyst for the etherification of isopentene with methanol to produce tert-amyl methyl ether. Catalysis Communications, 2010, 11, 824-828.	1.6	30
43	Preparation of highly loaded and dispersed Ni/SiO2 catalysts. Catalysis Communications, 2011, 12, 332-336.	1.6	29
44	A highly loaded and dispersed Ni2P/SiO2 catalyst for the hydrotreating reactions. Applied Catalysis B: Environmental, 2011, 104, 229-233.	10.8	29
45	Microcalorimetric and infrared spectroscopic studies of CO and C2H4 adsorption on Pd/SiO2 and Pd–Ag/SiO2 catalysts. Materials Chemistry and Physics, 2001, 68, 204-209.	2.0	28
46	Microcalorimetric adsorption and infrared spectroscopic studies of KNi/MgAlO catalysts for the hydrogenation of acetonitrile. Journal of Catalysis, 2013, 298, 161-169.	3.1	28
47	High-Loading Nickel Phosphide Catalysts Supported on SiO ₂ –TiO ₂ for Hydrodeoxygenation of Guaiacol. Energy & Fuels, 2019, 33, 7696-7704.	2.5	28
48	Microcalorimetric studies of O2 and C2H4 adsorption on Pd/SiO2 catalysts modified by Cu and Ag. Thermochimica Acta, 2001, 379, 45-50.	1.2	27
49	Characterization of acidic and redox properties of Ce–Mo–O catalysts for the selective oxidation of toluene. Thermochimica Acta, 2005, 434, 50-54.	1.2	27
50	Hydroisomerization of model FCC naphtha over sulfided Co(Ni)–Mo(W)/MCM-41 catalysts. Microporous and Mesoporous Materials, 2009, 120, 339-345.	2.2	27
51	Characterization and catalytic performance of supported molybdophosphoric acid catalysts for the oxidation of propylene to acetone. Applied Catalysis A: General, 2001, 206, 161-169.	2.2	26
52	Fabrication of Microropes via Biâ€electrospinning with a Rotating Needle Collector. Macromolecular Rapid Communications, 2010, 31, 2151-2154.	2.0	26
53	The preparation of Niâ€P ultrafine amorphous alloy particles by chemical reduction. Applied Physics Letters, 1991, 59, 3545-3546.	1.5	25
54	Preparation of Highly Loaded and Active Ni/Al2O3 Catalysts for the Hydrogenation of Aromatic Rings. Chinese Journal of Catalysis, 2011, 32, 917-925.	6.9	25

#	Article	IF	CITATIONS
55	Effects of water on the hydrogenation of acetone over Ni/MgAlO catalysts. Chinese Journal of Catalysis, 2015, 36, 380-388.	6.9	25
56	Mesoporous carbon supported nickel phosphide catalysts prepared by solid phase reaction. Catalysis Communications, 2009, 10, 1693-1696.	1.6	24
57	Surface Properties of Ni/MgO Catalysts for the Hydrogenation of Lauronitrile. Catalysis Letters, 2010, 135, 246-255.	1.4	22
58	Preparation and characterization of V-Ag-O catalysts for the selective oxidation of toluene. Applied Catalysis A: General, 2010, 379, 7-14.	2.2	22
59	Helical Nanoribbons Fabricated by Electrospinning. Macromolecular Materials and Engineering, 2011, 296, 1071-1074.	1.7	22
60	The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer–Tropsch synthesis. Journal of Colloid and Interface Science, 2012, 368, 456-461.	5.0	22
61	Preparation of hydrothermally stable, basic, and highly active nano nickel catalysts for the hydrodeoxygenation of N,N-dimethylformamide. Journal of Catalysis, 2016, 338, 1-11.	3.1	22
62	Chemical reaction for the preparation of Ni-P ultrafine amorphous alloy particles from aqueous solution. Journal of Materials Science Letters, 1996, 15, 715-717.	0.5	21
63	Hydrodeoxygenation of Guaiacol Catalyzed by ZrO ₂ –CeO ₂ -Supported Nickel Catalysts with High Loading. Energy & Fuels, 2020, 34, 4685-4692.	2.5	21
64	Surface acidic and redox properties of V-Zr-O catalysts for the selective oxidation of toluene to benzaldehyde. Journal of Molecular Catalysis A, 2007, 278, 209-214.	4.8	19
65	Surface Acidic and Redox Properties of V–Ag–O/TiO2 Catalysts for the Selective Oxidation of Toluene to Benzaldehyde. Catalysis Letters, 2009, 128, 373-378.	1.4	19
66	Preparation of highly active and hydrothermally stable nickel catalysts. Journal of Colloid and Interface Science, 2015, 447, 68-76.	5.0	19
67	Effect of surface acidity/basicity on the selective hydrogenation of maleic anhydride to succinic anhydride over supported nickel catalysts. Catalysis Communications, 2018, 110, 93-96.	1.6	19
68	Microcalorimetric Studies of Surface Acid/Base Properties of Magnesium Iron Catalysts Prepared from Hydrotalcite-Type Precursors. Journal of Solid State Chemistry, 1997, 128, 73-79.	1.4	18
69	Modification of Cr/SiO2 for the dehydrogenation of propane to propylene in carbon dioxide. Reaction Kinetics and Catalysis Letters, 2005, 85, 253-260.	0.6	18
70	Microcalorimetric adsorption studies of highly loaded Co–ZrO2/SiO2 catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 2011, 279, 246-256.	3.1	18
71	Effect of supports on the supported Ni2P catalysts prepared by the phosphidation using triphenylphosphine in liquid phase. Chemical Engineering Journal, 2015, 275, 89-101.	6.6	18
72	A Mössbauer study of In–Fe2O3/HZSM-5 catalysts for the selective catalytic reduction of NO by methane. Physical Chemistry Chemical Physics, 2002, 4, 2846-2851.	1.3	17

#	Article	IF	CITATIONS
73	Dispersion of magnetic metals on expanded graphite for the shielding of electromagnetic radiations. Applied Physics Letters, 2007, 90, 133117.	1.5	17
74	Effect of silica on the selective oxidation of methanol to dimethoxymethane over vanadia–titania catalysts. Catalysis Communications, 2009, 11, 47-50.	1.6	17
75	Preparation and characterization of thermally stable high surface area mesoporous vanadium oxides. Microporous and Mesoporous Materials, 2010, 131, 37-44.	2.2	17
76	Study of Phenol and Nicotine Adsorption on Nitrogen-Modified Mesoporous Carbons. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	17
77	Highly active Ni2P/SiO2 catalysts phosphorized by triphenylphosphine in liquid phase for the hydrotreating reactions. Applied Catalysis B: Environmental, 2014, 160-161, 344-355.	10.8	17
78	Microcalorimetric adsorption and infrared spectroscopic studies of supported nickel catalysts for the hydrogenation of diisopropylimine to diisopropylamine. Journal of Catalysis, 2018, 362, 35-45.	3.1	17
79	Formation of ultrafine amorphous alloy particles with uniform size by autocatalytic method. Journal of Materials Science Letters, 1993, 12, 1020-1021.	0.5	15
80	The determination of acidity in fluid cracking catalysts (FCCs) from adsorption microcalorimetry of probe molecules. Studies in Surface Science and Catalysis, 2004, 149, 35-70.	1.5	15
81	Tuning the sorption ability of hydroxyapatite/carbon composites for the simultaneous remediation of wastewaters containing organic-inorganic pollutants. Journal of Hazardous Materials, 2021, 420, 126656.	6.5	15
82	Understanding the effects of solvents on the hydrogenation of toluene over supported Pd and Ru catalysts. Catalysis Communications, 2021, 157, 106330.	1.6	14
83	Morphology control of nanohelix by electrospinning. Applied Physics Letters, 2012, 101, .	1.5	13
84	The strong interaction between poly(vinyl chloride) and a new eco-friendly plasticizer: A combined experiment and calculation study. Polymer, 2014, 55, 2831-2840.	1.8	13
85	Decomposition of polyoxymethylene dimethyl ethers and synthesis of bisphenol F. Catalysis Today, 2017, 298, 263-268.	2.2	13
86	Preparation of Fe2P and FeP catalysts for the hydrotreating reactions. Catalysis Communications, 2017, 100, 202-205.	1.6	13
87	Selective Oxidation of Propylene to Acetone over Supported Vanadia Catalysts. Reaction Kinetics and Catalysis Letters, 2001, 72, 263-267.	0.6	12
88	High surface area carbons as acidic components with Cu–ZnO/Al2O3 for the reforming of dimethoxymethane. Catalysis Communications, 2008, 9, 801-806.	1.6	12
89	Characterization and Catalytic Activities of Al2O3-Promoted Sulfated Tin Oxides. Catalysis Letters, 2009, 133, 119-124.	1.4	12
90	Skeletal Isomerization of 1-Hexene over Sulfided Co/Co-MCM-41 Catalysts. Energy & Fuels, 2009, 23, 320-326.	2.5	12

#	Article	IF	CITATIONS
91	Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation. Journal of Magnetism and Magnetic Materials, 2010, 322, 3084-3087.	1.0	12
92	High Electron Transfer Efficiency of Titania Dioxide Nanotube for Low Potential Electrochemiluminescent Biosensing. Electroanalysis, 2011, 23, 2629-2632.	1.5	12
93	The effect of surface acidic and basic properties of highly loaded Co catalysts on the Fischer–Tropsch synthesis. Catalysis Communications, 2012, 28, 155-158.	1.6	12
94	Effect of acidic promoters on the titania-nanotubes supported V2O5 catalysts for the selective oxidation of methanol to dimethoxymethane. Chinese Journal of Catalysis, 2013, 34, 2110-2117.	6.9	12
95	Microcalorimetric adsorption and infrared spectroscopic studies of supported Pd, Ru and Pd–Ru catalysts for the hydrogenation of aromatic rings with carboxyl groups. Catalysis Science and Technology, 2021, 11, 3070-3083.	2.1	12
96	Structural, acidic and redox properties of V2O5/NbP catalysts. Applied Catalysis A: General, 2007, 327, 218-225.	2.2	11
97	Preparation of Mesoporous V–Ce–Ti–O for the Selective Oxidation of Methanol to Dimethoxymethane. Catalysis Letters, 2008, 126, 155-163.	1.4	11
98	Dispersion of Nano Nickel Particles over SBA-15 Modified by Carbon Films on Pore Walls. Catalysis Letters, 2010, 134, 93-101.	1.4	11
99	Effect of Solvents on the Hydrogenation and Isomerization of 1-Hexene over Sulfided Coâ~'Mo/γ-Al ₂ O ₃ Catalysts for Hydrodesulfurization. Energy & Fuels, 2008, 22, 2450-2454.	2.5	10
100	Influence of N addition in mesoporous carbons used as supports of Pt, Pd and Ru for toluene hydrogenation and iron oxide for benzene oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 263-282.	0.8	10
101	Preparation of high surface area mesoporous melamine formaldehyde resins. Microporous and Mesoporous Materials, 2020, 309, 110591.	2.2	10
102	Title is missing!. Journal of Materials Science, 1997, 32, 749-753.	1.7	9
103	Methane Aromatization in the Absence of Oxygen Over Mo/H[B]ZSM-5 Catalysts. Reaction Kinetics and Catalysis Letters, 2000, 70, 349-356.	0.6	9
104	Influence of the host oxide of sulfated-titania catalysts on partial oxidation methanol reaction. Applied Catalysis A: General, 2010, 385, 224-231.	2.2	9
105	Sulfonated carbon materials with hydrophilic and lipophilic properties. Journal of Energy Chemistry, 2014, 23, 156-163.	7.1	8
106	Preparation of Fe2P/Al2O3 and FeP/Al2O3 catalysts for the hydrotreating reactions. Journal of Energy Chemistry, 2019, 29, 116-121.	7.1	8
107	Studies of the roles of Sn or Fe on γ-Al2O3-supported Pt catalysts by CO adsorption microcalorimetry and dehydrogenation reaction of C4 alkanes. Science in China Series B: Chemistry, 1998, 41, 606-615.	0.8	7
108	Formation of Surface Basicity through the Decomposition of Alkali Metal Nitrates on Î ³ -Al2O3. Langmuir, 1998, 14, 2756-2760.	1.6	7

#	Article	IF	CITATIONS
109	Mesoporous Carbon Supported Co-Mo and Ni-Mo Catalysts for Hydrodesulfurization. Chinese Journal of Catalysis, 2010, 31, 961-964.	6.9	7
110	Effect of Resorcinol Formaldehyde Resin Gel on the Preparation of Co/SiO2 Catalysts for Fischer-Tropsch Synthesis. Chinese Journal of Catalysis, 2012, 33, 621-628.	6.9	7
111	Effect of ZrO ₂ in Ni ₂ P/ZrO ₂ –Al ₂ O ₃ catalysts on hydrotreating reactions. RSC Advances, 2015, 5, 74312-74319.	1.7	7
112	Effects of acetone on the hydrogenation of diisopropylimine over supported nickel catalysts. Catalysis Communications, 2019, 122, 24-27.	1.6	7
113	Microcalorimetric and infrared spectroscopic studies of C2H4 adsorption on Ni/SiO2 and NiBi/SiO2 catalysts. Thermochimica Acta, 2000, 345, 19-23.	1.2	6
114	Microkinetic analysis for the selective oxidation of propylene to acetone over vanadia/titania. Applied Catalysis A: General, 2003, 246, 351-363.	2.2	6
115	Synthesis of high-surface-area Co-O-Si complex oxide for skeletal isomerization of 1-hexene and hydrodesulfurization of thiophene. Chinese Journal of Catalysis, 2014, 35, 1402-1409.	6.9	6
116	Preparation of NiAlO x and NiSiO x Complex Oxides with High Surface Areas for the Isomerization Reactions of 1-Hexene. Catalysis Letters, 2016, 146, 1934-1942.	1.4	6
117	Highly Loaded and Dispersed Cobalt Catalysts for the Hydrogenation of Toluene with Triethylamine. Industrial & Engineering Chemistry Research, 2019, 58, 19456-19464.	1.8	6
118	Preparation of Fe-B ultrafine amorphous alloy particles by the reaction of ferric chloride and potassium borohydride in aqueous solution. Journal of Materials Science Letters, 1994, 13, 1208-1210.	0.5	5
119	Highly Efficient Photocatalysts for Surface Hybridization of TiO ₂ Nanofibers with Carbon Films. ChemPlusChem, 2015, 80, 827-831.	1.3	5
120	Effect of loading on the Ni2P/Al2O3 catalysts for the hydrotreating reactions. Journal of Energy Chemistry, 2015, 24, 441-447.	7.1	4
121	Optimization of MgO/Al 2 O 3 ratio for the maximization of active site densities in the Ni 2 P/MgAlO catalysts for the hydrotreating reactions. Journal of Energy Chemistry, 2016, 25, 571-576.	7.1	4
122	Hydrogenation of Diisopropylimine over Mesoporous Carbon Supported Metal Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 13275-13282.	1.8	4
123	Synthesis of nickel phosphide nanorods for hydrotreating reactions. Catalysis Communications, 2019, 124, 67-70.	1.6	4
124	A Preferable Probe Molecule for Evaluating the Surface Acidic Properties of Sulfated Zirconium and Iron Oxides by Microcalorimetric Adsorption Measurement. Chemistry Letters, 1998, 27, 1179-1180.	0.7	3
125	Mesoporous Carbon Supported Pd Catalysts for the Hydrogenation of β-Sitosterol to β-Sitostanol. Chinese Journal of Catalysis, 2011, 32, 1771-1781.	6.9	3
126	Effects of surface functional groups of the N-containing carbon support on the catalytic properties of supported palladium. Microporous and Mesoporous Materials, 2021, 327, 111400.	2.2	3

#	Article	IF	CITATIONS
127	Hydrogenation induced deviation of temperature and concentration dependences of polymer-solvent interactions in poly(vinyl chloride) and a new eco-friendly plasticizer. European Physical Journal Plus, 2015, 130, 1.	1.2	2
128	Preparation of Acidic Resin-Carbon Composite Material through the Sulfonation and Carbonization of Polyphenyl. Chinese Journal of Catalysis, 2011, 32, 688-692.	6.9	2
129	Surface state and catalytic activity of ultrafine amorphous NiB alloy particles prepared by chemical reduction. Journal of Materials Science Letters, 1993, 12, 596-597.	0.5	2
130	A study on the reduction behavior of silica supported iron and platinum-iron catalysts. Reaction Kinetics and Catalysis Letters, 1998, 64, 255-260.	0.6	1
131	Effect of Ethylamines on the Hydrogenation of Toluene over Supported Nickel Catalysts. Industrial & Engineering Chemistry Research, 2018, , .	1.8	1
132	Selective Synthesis of Bisphenol F from Phenol and PODE ₂ over an Acidic Resin–Carbon Composite Material. Industrial & Engineering Chemistry Research, 2019, 58, 9223-9230.	1.8	1
133	Ionic Liquid-Assisted Synthesis of Vanadium Phosphate Catalysts from Phosphorous Acid for Selective Oxidation Reactions. Catalysis Letters, 2021, 151, 2366.	1.4	1