
Xing-Xing Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4859200/publications.pdf Version: 2024-02-01

XINC-XINC GU

#	Article	IF	CITATIONS
1	Defect-rich and highly porous carbon nanosheets derived from Ti3AlC2 MAX with good lithium storage properties. Chinese Chemical Letters, 2023, 34, 107228.	4.8	4
2	Poly(thiourea triethylene glycol) as a multifunctional binder for enhanced performance in lithium-sulfur batteries. Green Energy and Environment, 2022, 7, 1206-1216.	4.7	10
3	Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration, 2022, 2, 20210131.	5.4	23
4	Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review. Small, 2022, 18, e2104640.	5.2	69
5	Sustainable "Sweet and Salty―Synthesis of Hierarchical Porous Carbon for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 4991-5001.	2.5	6
6	Insight into the anti-corrosion performance of three imidazo-pyridazines for Al alloy in different concentrations of hydrochloric acid solutions. Journal of Industrial and Engineering Chemistry, 2022, 113, 348-359.	2.9	2
7	Exploiting methylated amino resin as a multifunctional binder for high-performance lithium–sulfur batteries. Rare Metals, 2021, 40, 529-536.	3.6	37
8	DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review. Nano-Micro Letters, 2021, 13, 13.	14.4	91
9	Adsorption of multi-bivalent heavy metal ions in aqueous solution onto aminopropyl-functionalized MCM-48 preparation by co-condensation. Separation Science and Technology, 2021, 56, 1819-1829.	1.3	5
10	Hyperbranched molecules having multiple functional groups as effective corrosion inhibitors for Al alloys in aqueous NaCl. Journal of Colloid and Interface Science, 2021, 585, 614-626.	5.0	30
11	Liâ€containing alloys beneficial for stabilizing lithium anode: A review. Engineering Reports, 2021, 3, e12339.	0.9	26
12	Polyoxometalate driven dendrite-free zinc electrodes with synergistic effects of cation and anion cluster regulation. Journal of Materials Chemistry A, 2021, 9, 7025-7033.	5.2	42
13	Multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries. Rare Metals, 2021, 40, 828-836.	3.6	18
14	Encapsulating Sn(OH) ₄ Nanoparticles in Micropores of Mesocarbon Microbeads: A New Anode Material for Highâ€Performance Lithium Ion Batteries. Advanced Materials Technologies, 2021, 6, 2000849.	3.0	14
15	Metal Atom-Decorated Carbon Nanomaterials for Enhancing Li-S/Se Batteries Performances: A Mini Review. Frontiers in Energy Research, 2021, 9, .	1.2	12
16	Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition. Nano-Micro Letters, 2021, 13, 89.	14.4	130
17	Water Reducer: A Highly Dispersing Binder for <scp>Highâ€Performance Lithiumâ€&ulfur</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1523-1530.	2.6	8
18	Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species. Advanced Energy Materials, 2020, 10, 1900375.	10.2	175

XING-XING GU

#	Article	IF	CITATIONS
19	From agaric hydrogel to nitrogen-doped 3D porous carbon for high-performance Li–S batteries. Journal of Materials Science, 2020, 55, 1136-1147.	1.7	17
20	Half-Sphere Shell Supported Pt Catalyst for Electrochemical Methanol Oxidation. Journal of the Electrochemical Society, 2020, 167, 084510.	1.3	5
21	Rational Design of Coâ€NiSe ₂ @Nâ€Doped Carbon Hollow Structure for Enhanced Li–S Battery Performance. Energy Technology, 2020, 8, 2000302.	1.8	14
22	Oxygen Reduction Reaction: Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species (Adv. Energy Mater. 11/2020). Advanced Energy Materials, 2020, 10, 2070050.	10.2	3
23	A Typha Angustifolia-Like MoS2/Carbon Nanofiber Composite for High Performance Li-S Batteries. Frontiers in Chemistry, 2020, 8, 149.	1.8	12
24	Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nature Communications, 2020, 11, 643.	5.8	161
25	Facile synthesis of CeO2/g-C3N4 nanocomposites with significantly improved visible-light photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 16154-16163.	3.8	43
26	One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Storage Materials, 2019, 23, 190-224.	9.5	86
27	Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives. Journal of Materials Chemistry A, 2019, 7, 11566-11583.	5.2	61
28	Recent development of metal compound applications in lithium–sulphur batteries. Journal of Materials Research, 2018, 33, 16-31.	1.2	41
29	Communication—Organic Silane Coupling Agent Si-69: A New Organosulfur Cathode Material for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2018, 165, A3782-A3784.	1.3	1
30	Carbon Nitride Nanofibres with Exceptional Lithium Storage Capacity: From Theoretical Prediction to Experimental Implementation. Advanced Functional Materials, 2018, 28, 1803972.	7.8	77
31	Adsorption Removal of Various Nitrophenols in Aqueous Solution by Aminopropyl-Modified Mesoporous MCM-48. Journal of Chemical & Engineering Data, 2018, 63, 3606-3614.	1.0	27
32	Highly Reversible Li–Se Batteries with Ultra-Lightweight N,S-Codoped Graphene Blocking Layer. Nano-Micro Letters, 2018, 10, 59.	14.4	41
33	Highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries. Journal of Materials Science, 2017, 52, 12336-12347.	1.7	44
34	Photoreduction preparation of Cu 2 O@polydopamine nanospheres with enhanced photocatalytic activity under visible light irradiation. Journal of Solid State Chemistry, 2017, 254, 55-61.	1.4	42
35	Ultrathin Fe ₂ O ₃ nanoflakes using smart chemical stripping for high performance lithium storage. Journal of Materials Chemistry A, 2017, 5, 18737-18743.	5.2	62
36	Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries. Batteries, 2016, 2, 33.	2.1	20

XING-XING GU

#	Article	IF	CITATIONS
37	Lithium-Sulfur Batteries: 3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium-Sulfur Batteries (Adv. Energy Mater. 12/2016). Advanced Energy Materials, 2016, 6, .	10.2	0
38	Grapheneâ€Based Sulfur Composites for Energy Storage and Conversion in Liâ€S Batteries. Chinese Journal of Chemistry, 2016, 34, 13-31.	2.6	32
39	All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy, 2016, 30, 756-761.	8.2	81
40	3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium‣ulfur Batteries. Advanced Energy Materials, 2016, 6, 1502518.	10.2	138
41	Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 15991-16001.	4.0	64
42	Ball-milling synthesis of ZnO@sulphur/carbon nanotubes and Ni(OH)2@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries. Electrochimica Acta, 2016, 196, 369-376.	2.6	77
43	Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy, 2015, 12, 178-185.	8.2	236
44	A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 9502-9509.	5.2	131
45	A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 16670-16678.	5.2	241
46	Role of anions on structure and pseudocapacitive performance of metal double hydroxides decorated with nitrogen-doped graphene. Science China Materials, 2015, 58, 114-125.	3.5	27
47	Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23885-23892.	4.0	35
48	Microporous bamboo biochar for lithium-sulfur batteries. Nano Research, 2015, 8, 129-139.	5.8	284
49	Adsorption of Methyl Violet Onto Mesoporous MCM-48 from Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2014, 14, 4655-4663.	0.9	9
50	Amino-Functionalized Mesoporous Silicas MCM-48 as Zn(II) Sorbents in Water Samples. Journal of Chemical & Engineering Data, 2012, 57, 2059-2066.	1.0	17