Krzysztof Swierkosz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4858916/publications.pdf Version: 2024-02-01

		687220	477173
32	1,011	13	29
papers	citations	h-index	g-index
32	32	32	2376
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
2	Differentiation of natural scrub communities of the Cotoneastro-Amelanchieretum group in Central Europe. PLoS ONE, 2022, 17, e0266868.	1.1	3
3	Changes in Species and Functional Diversity of the Herb Layer of Riparian Forest despite Six Decades of Strict Protection. Forests, 2022, 13, 747.	0.9	0
4	Phytosociological Analysis of Natural and Artificial Pine Forests of the Class Vaccinio-Piceetea BrBl. in BrBl. et al. 1939 in the Sudetes and Their Foreland (Bohemian Massif, Central Europe). Forests, 2021, 12, 98.	0.9	5
5	Secondary Serpentine Forests of Poland as a Refuge for Vascular Flora. Diversity, 2021, 13, 201.	0.7	2
6	"Lianification―or liana invasion – is there a difference?. Frontiers in Ecology and the Environment, 2021, 19, 377-378.	1.9	2
7	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	1.9	4
8	Increasing liana frequency in temperate European forest understories is driven by ivy. Frontiers in Ecology and the Environment, 2020, 18, 550-557.	1.9	13
9	Response to Comment on "Forest microclimate dynamics drive plant responses to warmingâ€: Science, 2020, 370, .	6.0	1
10	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	6.0	385
11	Does Protection Really Matter? A Case Study from Central European Oak Forests. Diversity, 2020, 12, 6.	0.7	2
12	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	3.4	67
13	Oak-hornbeam forests of central Europe. Preslia, 2020, 92, 1-34.	1.1	17
14	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	3
15	Landscape memory in abandoned areas—physical and ecological perspectives (Central European) Tj ETQq1 1 0	.784314 r 0.7	gBT /Overloc
16	Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 2018, 24, 1722-1740.	4.2	93
17	Syntaxonomy and ecology of beech forest vegetation in southwestern Poland. Phytocoenologia, 2018, 48, 297-320.	1.2	6
18	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	1.1	51

KRZYSZTOF SWIERKOSZ

#	Article	IF	CITATIONS
19	Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic and Applied Ecology, 2018, 30, 52-64.	1.2	11
20	Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution, 2018, 242, 1787-1799.	3.7	49
21	Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus, 2018, 9, 167-175.	1.7	45
22	Muskau Arch Geopark in Poland (Central Europe)—Is it Possible to Integrate Geoconservation and Geoeducation into Biodiversity Conservation?. Geoheritage, 2017, 9, 59-69.	1.5	24
23	Compositional changes in thermophilous oak forests in Poland over time: do they correspond to European trends?. Applied Vegetation Science, 2017, 20, 293-303.	0.9	19
24	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	2.2	89
25	Poland: Central European large river ecosystems under unprecedented threat. Oryx, 2017, 51, 397-397.	0.5	1
26	Fungal Biodiversity Profiles 31–40. Cryptogamie, Mycologie, 2017, 38, 353-406.	0.2	33
27	Increasing Area of Deciduous Forest Communities (Querco-Fagetea Class) as an Unintended Effect of Regular Forestry Management – a Study from Central Europe. Polish Journal of Environmental Studies, 2017, 26, 323-329.	0.6	1
28	Polypodium Interjectum And P. × Mantoniae (Polypodiaceae) In The Polish Sudetes. Polish Botanical Journal, 2015, 60, 163-172.	0.5	0
29	The spread of Impatiens parviflora DC. in Central European oak forests – another stage of invasion?. Acta Societatis Botanicorum Poloniae, 2015, 84, 401-411.	0.8	14
30	ls the plant species composition of Silver fir mixed forest in the Polish highlands affected by air pollution and climate warming?. Phytocoenologia, 2014, 44, 45-53.	1.2	2
31	Variability of Abies alba-dominated forests in Central Europe. Open Life Sciences, 2014, 9, 495-518.	0.6	6
32	Diversity of Mulgedio-Aconitetea communities in the Sudetes Mts. (SW Poland) in the Central European context. Vegetation Classification and Survey, 0, 3, 67-86.	0.0	2