
## Alexander V Soldatov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4858903/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Structure and Properties of the Fullerene Dimer C140Produced by Pressure Treatment of C70. Journal of Physical Chemistry B, 2000, 104, 4101-4110.                                         | 2.6 | 63        |
| 2  | C60one- and two-dimensional polymers, dimers, and hard fullerite: Thermal expansion, anharmonicity, and kinetics of depolymerization. Physical Review B, 1999, 60, 16920-16927.           | 3.2 | 51        |
| 3  | Discovery of carbon-based strongest and hardest amorphous material. National Science Review, 2022,<br>9, nwab140.                                                                         | 9.5 | 49        |
| 4  | Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu( <scp>ii</scp> ) onto TEMPO-oxidized cellulose nanofibers. Nanoscale, 2017, 9, 7419-7428.                 | 5.6 | 45        |
| 5  | Structure and physical properties of nanoclustered graphene synthesized from C60 fullerene under high pressure and high temperature. Applied Physics Letters, 2014, 104, .                | 3.3 | 34        |
| 6  | Calibration of the ruby pressure scale to 150 GPa. Physica Status Solidi (B): Basic Research, 2007, 244, 460-467.                                                                         | 1.5 | 30        |
| 7  | Multiscale Characterization of Single-Walled Carbon Nanotube/Polymer Composites by Coupling<br>Raman and Brillouin Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 17648-17654. | 3.1 | 28        |
| 8  | Structure and properties of superelastic hard carbon phase created in fullerene-metal composites by high temperature-high pressure treatment. Journal of Applied Physics, 2012, 111, .    | 2.5 | 25        |
| 9  | Stability of carbon nanotubes to laser irradiation probed by Raman spectroscopy. Physica Status<br>Solidi (B): Basic Research, 2008, 245, 2212-2215.                                      | 1.5 | 23        |
| 10 | Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene. Cell Reports Physical Science, 2021, 2, 100575.                                   | 5.6 | 18        |
| 11 | Probing structural stability of double-walled carbon nanotubes at high non-hydrostatic pressure by<br>Raman spectroscopy. High Pressure Research, 2011, 31, 186-190.                      | 1.2 | 17        |
| 12 | Probing structural integrity of single walled carbon nanotubes by dynamic and static compression.<br>Physica Status Solidi - Rapid Research Letters, 2014, 8, 935-938.                    | 2.4 | 14        |
| 13 | Covalent functionalization of fewâ€wall carbon nanotubes by ferrocene derivatives for<br>bioelectrochemical devices. Physica Status Solidi (B): Basic Research, 2012, 249, 2349-2352.     | 1.5 | 12        |
| 14 | Molecular rotation in C70 at high pressures: A thermal conductivity study. Journal of Physics and Chemistry of Solids, 1996, 57, 1371-1375.                                               | 4.0 | 11        |
| 15 | Comparative Raman Study of the 1D and 2D Polymeric Phases of C60 under Pressure. Physica Status<br>Solidi (B): Basic Research, 1999, 215, 443-448.                                        | 1.5 | 11        |
| 16 | The effect of shock wave compression on double wall carbon nanotubes. Physica Status Solidi (B):<br>Basic Research, 2012, 249, 2378-2381.                                                 | 1.5 | 10        |
| 17 | Raman modes of the two-dimensional tetragonal polymeric phase of C60 under high pressure. Journal of Chemical Physics, 2001, 114, 9099-9104.                                              | 3.0 | 8         |
| 18 | Laser-induced damage and destruction of HiPCO nanotubes in different gas environments. Physica<br>Status Solidi (B): Basic Research, 2011, 248, 2540-2543.                                | 1.5 | 7         |

| #  | Article                                                                                                                                                                                                                                                | IF       | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 19 | Preferential functionalisation of carbon nanotubes probed by Raman spectroscopy. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2008, 40, 2343-2346.                                                                                        | 2.7      | 6         |
| 20 | <i>In situ</i> electrical conductivity and Raman study of C <sub>60</sub> tetragonal polymer at high pressures up to 30 GPa. Physica Status Solidi (B): Basic Research, 2010, 247, 3068-3071.                                                          | 1.5      | 6         |
| 21 | High-Pressure Synthesized Nanostructural \${hbox {MgB}}_{2}\$ Materials With High Performance of Superconductivity, Suitable for Fault Current Limitation and Other Applications. IEEE Transactions on Applied Superconductivity, 2011, 21, 2694-2697. | 1.7      | 6         |
| 22 | The physical properties of high-pressure polymerized C60. Journal of Physics and Chemistry of Solids, 1997, 58, 1881-1885.                                                                                                                             | 4.0      | 5         |
| 23 | Covalent Functionalization of HiPco Singleâ€Walled Carbon Nanotubes: Differences in the Oxidizing<br>Action of H <sub>2</sub> SO <sub>4</sub> and HNO <sub>3</sub> during a Soft Oxidation Process.<br>ChemPhysChem, 2015, 16, 2692-2701.              | 2.1      | 5         |
| 24 | Tunable electrical properties of C60·m-xylene and the formation of semiconducting ordered amorphous carbon clusters under pressure. Nano Research, 2022, 15, 3788-3793.                                                                                | 10.4     | 5         |
| 25 | Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules. Beilstein Journal of Nanotechnology, 2018, 9, 2750-2762.                                      | 2.8      | 4         |
| 26 | Fragmentation and structural transitions of few-layer graphene under high shear stress. Applied Physics Letters, 2021, 118, .                                                                                                                          | 3.3      | 4         |
| 27 | Electronic structure studies of pressure-polymerized C60. Synthetic Metals, 1999, 103, 2454-2455.                                                                                                                                                      | 3.9      | 3         |
| 28 | Effects on Raman spectra of functionalisation of single walled carbon nanotubes by nitric acid.<br>Physica Status Solidi (B): Basic Research, 2011, 248, 2552-2555.                                                                                    | 1.5      | 3         |
| 29 | Mild covalent functionalization of single-walled carbon nanotubes highlighted by spectroscopic ellipsometry. Carbon, 2016, 96, 557-564.                                                                                                                | 10.3     | 3         |
| 30 | Raman study of inhomogeneities in carbon nanotube distribution in CNT–PMMA composites. Physica<br>Status Solidi (B): Basic Research, 2010, 247, 2810-2813.                                                                                             | 1.5      | 2         |
| 31 | Singleâ€Walled Carbon Nanotubes Shockâ€Compressed to 0.5 Mbar. Physica Status Solidi (B): Basic<br>Research, 2017, 254, 1700315.                                                                                                                       | 1.5      | 2         |
| 32 | 2D polymerization and doping of fullerenes under pressure. High Pressure Research, 2000, 18, 139-143.                                                                                                                                                  | 1.2      | 1         |
| 33 | High pressure study of the 2D polymeric phase of C60by means of raman spectroscopy. High Pressure<br>Research, 2000, 18, 145-151.                                                                                                                      | 1.2      | 1         |
| 34 | Electrocatalytic effect towards NADH induced by HiPco single-walled carbon nanotubes covalently<br>functionalized by ferrocene derivatives. Materials Research Society Symposia Proceedings, 2013, 1531, 1.                                            | 0.1      | 1         |
| 35 | Raman and electron microscopy study of C <sub>60</sub> collapse/transformation to a nanoclustered<br>graphene-based disordered carbon phase at high pressure/temperature. Physica Status Solidi (B): Basic<br>Research, 2015, 252, 2626-2629.          | 1.5      | 1         |
| 36 | Singleâ€Walled Carbon Nanotubes Shockâ€Compressed to 0.5 Mbar (Phys. Status Solidi B 11/2017). Physica<br>Status Solidi (B): Basic Research, 2017, 254, 1770259.                                                                                       | a<br>1.5 | 1         |

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thermal Defect Modulation and Functional Performance: A Case Study on ZnO–rGO Nanocomposites.<br>Physica Status Solidi (B): Basic Research, 2019, 256, 1900239. | 1.5 | 1         |