Andrew Bowie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4858732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry. Annual Review of Marine Science, 2022, 14, 303-330.	5.1	48
2	Constraining the Contribution of Hydrothermal Iron to Southern Ocean Export Production Using Deep Ocean Iron Observations. Frontiers in Marine Science, 2022, 9, .	1.2	2
3	Trace elements and nutrients in wildfire plumes to the southeast of Australia. Atmospheric Research, 2022, 270, 106084.	1.8	11
4	Southern Ocean Phytoplankton Stimulated by Wildfire Emissions and Sustained by Iron Recycling. Geophysical Research Letters, 2022, 49, .	1.5	9
5	Enhanced Deposition of Atmospheric Soluble Iron by Intrusions of Marine Air Masses to East Antarctica. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	0
6	Manganese biogeochemistry in the Southern Ocean, from Tasmania to Antarctica. Limnology and Oceanography, 2021, 66, 2547-2562.	1.6	13
7	Homeostasis drives intense microbial trace metal processing on marine particles. Limnology and Oceanography, 2021, 66, 3842-3855.	1.6	8
8	Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature, 2021, 597, 370-375.	13.7	99
9	Atmospheric inputs of volcanic iron around Heard and McDonald Islands, Southern ocean. Environmental Science Atmospheres, 2021, 1, 508-517.	0.9	4
10	Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta, 2020, 208, 120377.	2.9	31
11	Dissolved iron in the Bermuda region of the subtropical North Atlantic Ocean: Seasonal dynamics, mesoscale variability, and physicochemical speciation. Marine Chemistry, 2020, 219, 103748.	0.9	7
12	Electrochemical evaluation of iron-binding ligands along the Australian GEOTRACES southwestern Pacific section (GP13). Marine Chemistry, 2020, 219, 103736.	0.9	12
13	Analysis of levoglucosan and its isomers in atmospheric samples by ion chromatography with electrospray lithium cationisation - Triple quadrupole tandem mass spectrometry. Journal of Chromatography A, 2020, 1610, 460557.	1.8	18
14	A First Global Oceanic Compilation of Observational Dissolved Aluminum Data With Regional Statistical Data Treatment. Frontiers in Marine Science, 2020, 7, .	1.2	14
15	Glacial and Hydrothermal Sources of Dissolved Iron (II) in Southern Ocean Waters Surrounding Heard and McDonald Islands. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016286.	1.0	5
16	Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications. Frontiers in Marine Science, 2020, 7, .	1.2	100
17	Origin, transport and deposition of aerosol iron to Australian coastal waters. Atmospheric Environment, 2020, 228, 117432.	1.9	21
18	Atmospheric Trace Metal Deposition near the Great Barrier Reef, Australia. Atmosphere, 2020, 11, 390.	1.0	12

#	Article	IF	CITATIONS
19	Atmospheric Trace Metal Deposition from Natural and Anthropogenic Sources in Western Australia. Atmosphere, 2020, 11, 474.	1.0	9

Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES) Tj ETQq0 0 0.3 gBT /Overlock 10 T $\frac{100}{24}$

21	Quantifying Lithogenic Inputs to the Southern Ocean Using Long-Lived Thorium Isotopes. Frontiers in Marine Science, 2020, 7, .	1.2	6
22	Evaluation of aerosol iron solubility over Australian coastal regions based on inverse modeling: implications of bushfires on bioaccessible iron concentrations in the Southern Hemisphere. Progress in Earth and Planetary Science, 2020, 7, .	1.1	22
23	The Importance of Bottom-Up Approaches to International Cooperation in Ocean Science: The Iron Story. Oceanography, 2020, 33, 11-15.	0.5	4
24	The autonomous clean environmental (ACE) sampler: A traceâ€metal clean seawater sampler suitable for openâ€ocean timeâ€series applications. Limnology and Oceanography: Methods, 2019, 17, 490-504.	1.0	4
25	Regulation of the Phytoplankton Heme b Iron Pool During the North Atlantic Spring Bloom. Frontiers in Microbiology, 2019, 10, 1566.	1.5	4
26	Developing Autonomous Observing Systems for Micronutrient Trace Metals. Frontiers in Marine Science, 2019, 6, .	1.2	19
27	The interplay between regeneration and scavenging fluxes drives ocean iron cycling. Nature Communications, 2019, 10, 4960.	5.8	41
28	High Lability Fe Particles Sourced From Glacial Erosion Can Meet Previously Unaccounted Biological Demand: Heard Island, Southern Ocean. Frontiers in Marine Science, 2019, 6, .	1.2	25
29	Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, 2019, 5, eaau7671.	A 7	128
		ч. <i>г</i>	
30	Iron availability influences nutrient drawdown in the Heard and McDonald Islands region, Southern Ocean. Marine Chemistry, 2019, 211, 1-14.	0.9	16
30 31	Iron availability influences nutrient drawdown in the Heard and McDonald Islands region, Southern Ocean. Marine Chemistry, 2019, 211, 1-14. Pre-concentration of thorium and neodymium isotopes using Nobias chelating resin: Method development and application to chromatographic separation. Talanta, 2019, 202, 600-609.	0.9	16 10
30 31 32	Iron availability influences nutrient drawdown in the Heard and McDonald Islands region, Southern Ocean. Marine Chemistry, 2019, 211, 1-14. Pre-concentration of thorium and neodymium isotopes using Nobias chelating resin: Method development and application to chromatographic separation. Talanta, 2019, 202, 600-609. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta, 2019, 197, 653-668.	0.9 2.9 2.9	16 10 68
30 31 32 33	Iron availability influences nutrient drawdown in the Heard and McDonald Islands region, Southern Ocean. Marine Chemistry, 2019, 211, 1-14. Pre-concentration of thorium and neodymium isotopes using Nobias chelating resin: Method development and application to chromatographic separation. Talanta, 2019, 202, 600-609. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta, 2019, 197, 653-668. Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology, 2019, 511, 452-464.	 0.9 2.9 2.9 1.4 	16 10 68 44
30 31 32 33 33	Iron availability influences nutrient drawdown in the Heard and McDonald Islands region, Southern Ocean. Marine Chemistry, 2019, 211, 1-14. Pre-concentration of thorium and neodymium isotopes using Nobias chelating resin: Method development and application to chromatographic separation. Talanta, 2019, 202, 600-609. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta, 2019, 197, 653-668. Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology, 2019, 511, 452-464. Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300Åkm South Pacific Zonal Section (153ŰE〓150ŰW). Global Biogeochemical Cycles, 2018, 32, 187-207.	 0.9 2.9 2.9 1.4 1.9 	16 10 68 44 31
30 31 32 33 34 35	Iron availability influences nutrient drawdown in the Heard and McDonald Islands region, Southern Ocean. Marine Chemistry, 2019, 211, 1-14. Pre-concentration of thorium and neodymium isotopes using Nobias chelating resin: Method development and application to chromatographic separation. Talanta, 2019, 202, 600-609. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta, 2019, 197, 653-668. Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology, 2019, 511, 452-464. Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300Åkm South Pacific Zonal Section (153ŰE–150ŰW). Global Biogeochemical Cycles, 2018, 32, 187-207. GEOTRACES DATA PRODUCTS: STANDARDISING AND LINKING OCEAN TRACE ELEMENT AND ISOTOPE DATA AT AGLOBAL SCALE. Elements, 2018, 14, 436-437.	 0.9 2.9 2.9 1.4 1.9 0.5 	16 10 68 44 31 3

#	Article	IF	CITATIONS
37	The Neodymium Isotope Fingerprint of Adélie Coast Bottom Water. Geophysical Research Letters, 2018, 45, 11,247.	1.5	16
38	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	1.4	257
39	Pelagic Iron Recycling in the Southern Ocean: Exploring the Contribution of Marine Animals. Frontiers in Marine Science, 2018, 5, .	1.2	29
40	Sustained Upwelling of Subsurface Iron Supplies Seasonally Persistent Phytoplankton Blooms Around the Southern Kerguelen Plateau, Southern Ocean. Journal of Geophysical Research: Oceans, 2018, 123, 5986-6003.	1.0	40
41	The integral role of iron in ocean biogeochemistry. Nature, 2017, 543, 51-59.	13.7	482
42	Zinc requirement for two phytoplankton strains of the Tasman Sea. Marine and Freshwater Research, 2017, 68, 361.	0.7	3
43	Physical speciation and solubility of iron from baleen whale faecal material. Marine Chemistry, 2017, 194, 79-88.	0.9	15
44	Iron cycling in the anoxic cryo-ecosystem of Antarctic Lake Vida. Biogeochemistry, 2017, 134, 17-27.	1.7	3
45	Detection, dispersal and biogeochemical contribution of hydrothermal iron in the ocean. Marine and Freshwater Research, 2017, 68, 2184.	0.7	14
46	The origin of lithogenic sediment in the south-western Ross Sea and implications for iron fertilization. Antarctic Science, 2016, 28, 250-260.	0.5	16
47	Zinc cycling in the Tasman Sea: Distribution, speciation and relation to phytoplankton community. Marine Chemistry, 2016, 182, 25-37.	0.9	15
48	Nutrient Cycling: Are Antarctic Krill a Previously Overlooked Source in the Marine Iron Cycle?. Current Biology, 2016, 26, R884-R887.	1.8	12
49	Impact of the natural Fe-fertilization on the magnitude, stoichiometry and efficiency of particulate biogenic silica, nitrogen and iron export fluxes. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 117, 11-27.	0.6	10
50	Dry season aerosol iron solubility in tropical northern Australia. Atmospheric Chemistry and Physics, 2016, 16, 12829-12848.	1.9	30
51	Understanding the variability in the iron concentration of Antarctic krill. Limnology and Oceanography, 2016, 61, 1651-1660.	1.6	15
52	Multiple sources of soluble atmospheric iron to Antarctic waters. Global Biogeochemical Cycles, 2016, 30, 421-437.	1.9	33
53	A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: Sensitivity of primary productivity estimates to parameter uncertainty. Ecological Modelling, 2016, 320, 203-212.	1.2	35
54	Iron biogeochemistry in Antarctic pack ice during SIPEX-2. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 131, 111-122.	0.6	33

#	Article	IF	CITATIONS
55	Dissolved iron and iron(II) distributions beneath the pack ice in the East Antarctic (120°E) during the winter/spring transition. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 131, 96-110.	0.6	14
56	Fractional iron solubility of atmospheric iron inputs to the Southern Ocean. Marine Chemistry, 2015, 177, 20-32.	0.9	37
57	Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern) Tj ETQq1 1 0.7	784314 rg 1.3	BT_/Overlock
58	Sourcing the iron in the naturally fertilised bloom around the Kerguelen Plateau: particulate trace metal dynamics. Biogeosciences, 2015, 12, 739-755.	1.3	42
59	Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the ²³⁴ Th approach. Biogeosciences, 2015, 12, 3831-3848.	1.3	31
60	High variability in dissolved iron concentrations in the vicinity of the Kerguelen Islands (Southern) Tj ETQq0 0 0 r	gBT_/Overl	lock 10 Tf 50
61	The role of bacterial and algal exopolymeric substances in iron chemistry. Marine Chemistry, 2015, 173, 148-161.	0.9	44
62	A zonal picture of the water column distribution of dissolved iron(II) during the U.S. GEOTRACES North Atlantic transect cruise (GEOTRACES GA03). Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 166-175.	0.6	40
63	The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling. PLoS ONE, 2014, 9, e114067.	1.1	57
64	Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nature Geoscience, 2014, 7, 314-320.	5.4	223
65	Advances in the offline trace metal extraction of Mn, Co, Ni, Cu, Cd, and Pb from open ocean seawater samples with determination by sector field ICP-MS analysis. Analytical Methods, 2014, 6, 2837-2847.	1.3	38
66	Determination of dissolved iron in seawater: A historical review. Marine Chemistry, 2014, 166, 25-35.	0.9	47
67	Ubiquitous Presence of Fe(II) in Aquatic Colloids and Its Association with Organic Carbon. Environmental Science and Technology Letters, 2014, 1, 387-392.	3.9	36
68	Size fractionation of iron, manganese and aluminium in Antarctic fast ice reveals a lithogenic origin and low iron solubility. Marine Chemistry, 2014, 161, 47-56.	0.9	42
69	Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition. Marine and Freshwater Research, 2014, 65, 517.	0.7	30
70	Trace metals Cd, Co, Cu, Ni, and Zn in waters of the subantarctic and Polar Frontal Zones south of Tasmania during the â€~SAZ-Sense' project. Marine Chemistry, 2013, 148, 63-76.	0.9	21
71	Preliminary investigation into the stimulation of phytoplankton photophysiology and growth by whale faeces. Journal of Experimental Marine Biology and Ecology, 2013, 446, 1-9.	0.7	28
72	The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent. Journal of Marine Systems, 2013, 117-118, 43-52.	0.9	30

#	Article	IF	CITATIONS
73	Methods for the sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnology and Oceanography: Methods, 2013, 11, 62-78.	1.0	100
74	Reversed phase high performance liquid chromatographic determination of dissolved aluminium in open ocean seawater. Limnology and Oceanography: Methods, 2012, 10, 832-839.	1.0	3
75	Zinc marine biogeochemistry in seawater: a review. Marine and Freshwater Research, 2012, 63, 644.	0.7	34
76	A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences, 2012, 9, 2333-2349.	1.3	165
77	Imprint of a dissolved cobalt basaltic source on the Kerguelen Plateau. Biogeosciences, 2012, 9, 5279-5290.	1.3	9
78	PHYTOPLANKTON SELENIUM REQUIREMENTS: THE CASE FOR SPECIES ISOLATED FROM TEMPERATE AND POLAR REGIONS OF THE SOUTHERN HEMISPHERE ¹ . Journal of Phycology, 2012, 48, 585-594.	1.0	11
79	High temporal resolution observations of spring fast ice melt and seawater iron enrichment in East Antarctica. Journal of Geophysical Research, 2011, 116, .	3.3	46
80	Fast and sensitive determination of aluminium with RP-HPLC using an ultra-short monolithic column. Analytical Methods, 2011, 3, 2488.	1.3	2
81	Mercury in the Southern Ocean. Geochimica Et Cosmochimica Acta, 2011, 75, 4037-4052.	1.6	209
82	Iron fractionation in pack and fast ice in East Antarctica: Temporal decoupling between the release of dissolved and particulate iron during spring melt. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1222-1236.	0.6	43
83	Potential climate change impacts on microbial distribution and carbon cycling in the Australian Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 2150-2161.	0.6	32
84	Distributions of dissolved and particulate iron in the sub-Antarctic and Polar Frontal Southern Ocean (Australian sector). Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 2094-2112.	0.6	65
85	Vertical distributions of iron-(III) complexing ligands in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 2113-2125.	0.6	75
86	Oceanography of the subantarctic and Polar Frontal Zones south of Australia during summer: Setting for the SAZ-Sense study. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 2059-2070.	0.6	64
87	The influence of iron and light on net community production in the Subantarctic and Polar Frontal Zones. Biogeosciences, 2011, 8, 227-237.	1.3	72
88	Size-fractionated labile trace elements in the Northwest Pacific and Southern Oceans. Marine Chemistry, 2011, 126, 108-113.	0.9	27
89	Distribution of dissolved and particulate metals in Antarctic sea ice. Marine Chemistry, 2011, 124, 134-146.	0.9	68
90	Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma–mass spectrometry. Analytica Chimica Acta, 2010, 676, 15-27.	2.6	70

#	Article	IF	CITATIONS
91	Hydrothermal contribution to the oceanic dissolved iron inventory. Nature Geoscience, 2010, 3, 252-256.	5.4	353
92	Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish and Fisheries, 2010, 11, 203-209.	2.7	146
93	Distribution of dissolved iron in Antarctic sea ice: Spatial, seasonal, and interâ€annual variability. Journal of Geophysical Research, 2010, 115, .	3.3	94
94	An iron budget during the natural iron fertilisation experiment KEOPS (Kerguelen Islands, Southern) Tj ETQq0 0 0	rgBT /Ove 1.3	rlock 10 Tf 5
95	Biogeochemical observations during the winter–spring transition in East Antarctic sea ice: Evidence of iron and exopolysaccharide controls. Marine Chemistry, 2009, 115, 163-175.	0.9	84
96	Biogeochemical iron budgets of the Southern Ocean south of Australia: Decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Global Biogeochemical Cycles, 2009, 23, .	1.9	164
97	Determination of Iron in Seawater. , 2009, , .		1
98	Spatial and temporal distribution of Fe, Ni, Cu and Pb along 140°E in the Southern Ocean during austral summer 2001/02. Marine Chemistry, 2008, 111, 171-183.	0.9	25
99	A Lagrangian biogeochemical study of an eddy in the Northeast Atlantic. Progress in Oceanography, 2008, 76, 366-398.	1.5	19
100	Dissolved iron in the Australian sector of the Southern Ocean (CLIVAR SR3 section): Meridional and seasonal trends. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 911-925.	0.6	83
101	Intercomparison between FI-CL and ICP-MS for the determination of dissolved iron in Atlantic seawater. Environmental Chemistry, 2007, 4, 1.	0.7	12
102	Developing Standards for Dissolved Iron in Seawater. Eos, 2007, 88, 131.	0.1	237
103	Determination of aluminium in natural water samples. Analytica Chimica Acta, 2007, 588, 153-165.	2.6	114
104	Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 2007, 446, 1070-1074.	13.7	707
105	A community-wide intercomparison exercise for the determination of dissolved iron in seawater. Marine Chemistry, 2006, 98, 81-99.	0.9	60
106	Design of an Automated Flow Injection-Chemiluminescence Instrument Incorporating a Miniature Photomultiplier Tube for Monitoring Picomolar Concentrations of Iron in Seawater. Journal of	0.5	15

	Automated Methods and Management in Chemistry, 2005, 2005, 37-43.		
107	Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region) during summer: Eolian imprint, spatiotemporal variability, and ecological implications. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	115
108	Latex-Coated Polymeric Monolithic Ion-Exchange Stationary Phases. 1. Anion-Exchange Capillary Electrochromatography and In-Line Sample Preconcentration in Capillary Electrophoresis. Analytical Chemistry, 2005, 77, 407-416.	3.2	118

7

#	Article	IF	CITATIONS
109	Analytical intercomparison between flow injectionâ€chemiluminescence and flow injectionâ€spectrophotometry for the determination of picomolar concentrations of iron in seawater. Limnology and Oceanography: Methods, 2004, 2, 42-54.	1.0	52
110	Modern preconcentration methods for the determination of selenium species in environmental water samples. TrAC - Trends in Analytical Chemistry, 2004, 23, 491-500.	5.8	51
111	Shipboard analytical intercomparison of dissolved iron in surface waters along a north–south transect of the Atlantic Ocean. Marine Chemistry, 2003, 84, 19-34.	0.9	37
112	Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 1339-1352.	0.6	172
113	Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean. Journal of Plankton Research, 2003, 25, 405-416.	0.8	137
114	Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection. Journal of Automated Methods and Management in Chemistry, 2002, 24, 41-47.	0.5	2
115	Real-Time Monitoring of Picomolar Concentrations of Iron(II) in Marine Waters Using Automated Flow Injection-Chemiluminescence Instrumentation. Environmental Science & Technology, 2002, 36, 4600-4607.	4.6	77
116	Biogeochemistry of Fe and other trace elements (Al, Co, Ni) in the upper Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 605-636.	0.6	80
117	Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection. Journal of Automated Methods and Management in Chemistry, 2002, 24, 41-47.	0.5	11
118	Flow Injection Techniques for the in situ Monitoring of Marine Processes. , 2002, , 385-402.		2
119	Retention of dissolved iron and Fellin an iron induced Southern Ocean phytoplankton bloom. Geophysical Research Letters, 2001, 28, 3425-3428.	1.5	132
120	Macronutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2467-2481.	0.6	68
121	The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2703-2743.	0.6	160
122	Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment. Limnology and Oceanography, 2001, 46, 1802-1808.	1.6	78
123	Determination of iron in seawater. Analytica Chimica Acta, 2001, 442, 1-14.	2.6	195
124	A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 2000, 407, 695-702.	13.7	1,417
125	Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature, 2000, 407, 727-730.	13.7	260
126	Determination of cobalt and iron in estuarine and coastal waters using flow injection with chemiluminescence detection. Analyst, The, 2000, 125, 51-57.	1.7	52

#	Article	IF	CITATIONS
127	Acquisition of chemiluminescence spectral profiles using a continuous flow manifold with two dimensional CCD detection. Analyst, The, 2000, 125, 387-390.	1.7	15
128	Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection. Analytica Chimica Acta, 1998, 361, 189-200.	2.6	150
129	Analytical Applications of Liquid Phase Chemiluminescence Reactions — A Review. Luminescence, 1996, 11, 61-90.	0.2	146
130	Sensitive determination of manganese using flow injection and chemiluminescent detection. Analyst, The, 1995, 120, 2119.	1.7	11