Jukka A Hartikka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4857969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cytomegalovirus DNA vaccine induces antibodies that block viral entry into fibroblasts and epithelial cells. Vaccine, 2015, 33, 7328-7336.	1.7	22
2	Preclinical evaluation of Vaxfectin®-adjuvanted Vero cell-derived seasonal split and pandemic whole virus influenza vaccines. Human Vaccines and Immunotherapeutics, 2013, 9, 1333-1345.	1.4	9
3	Preclinical evaluation of the immunogenicity and safety of plasmid DNA-based prophylactic vaccines for human cytomegalovirus. Human Vaccines and Immunotherapeutics, 2012, 8, 1595-1606.	1.4	14
4	Vaxfectin: a versatile adjuvant for plasmid DNA- and protein-based vaccines. Expert Opinion on Drug Delivery, 2010, 7, 1433-1446.	2.4	51
5	Vaxfectin®, a cationic lipid-based adjuvant for protein-based influenza vaccines. Vaccine, 2009, 27, 6399-6403.	1.7	20
6	A TaqMan® Reverse Transcription Polymerase Chain Reaction (RT-PCR) InÂVitro Potency Assay for Plasmid-based Vaccine Products. Molecular Biotechnology, 2008, 40, 47-57.	1.3	10
7	Physical characterization and <i>in vivo</i> evaluation of poloxamerâ€based DNA vaccine formulations. Journal of Gene Medicine, 2008, 10, 770-782.	1.4	38
8	Comparison of Rabbit and Mouse Models for Persistence Analysis of Plasmid-Based Vaccines. Hum Vaccin, 2006, 2, 113-118.	2.4	13
9	I. Poloxamer-Formulated Plasmid DNA-Based Human Cytomegalovirus Vaccine: Evaluation of Plasmid DNA Biodistribution/Persistence and Integration. Human Gene Therapy, 2005, 16, 1143-1150.	1.4	44
10	ll. Cationic Lipid-Formulated Plasmid DNA-Based Bacillus anthracis Vaccine: Evaluation of Plasmid DNA Persistence and Integration Potential. Human Gene Therapy, 2005, 16, 1151-1156.	1.4	17
11	II. Cationic Lipid-Formulated Plasmid DNA-Based Bacillus anthracis Vaccine: Evaluation of Plasmid DNA Persistence and Integration Potential. Human Gene Therapy, 2005, .	1.4	0
12	I. Poloxamer-Formulated Plasmid DNA-Based Human Cytomegalovirus Vaccine: Evaluation of Plasmid DNA Biodistribution/Persistence and Integration. Human Gene Therapy, 2005, .	1.4	0
13	I. Poloxamer-Formulated Plasmid DNA-Based Human Cytomegalovirus Vaccine: Evaluation of Plasmid DNA Biodistribution/Persistence and Integration. Human Gene Therapy, 2005, .	1.4	0
14	II. Cationic Lipid-Formulated Plasmid DNA-Based Bacillus anthracis Vaccine: Evaluation of Plasmid DNA Persistence and Integration Potential. Human Gene Therapy, 2005, .	1.4	0
15	Vaxfectin enhances the humoral immune response to plasmid DNA-encoded antigens. Vaccine, 2001, 19, 1911-1923.	1.7	91
16	Vaxfectin enhances antigen specific antibody titers and maintains Th1 type immune responses to plasmid DNA immunization. Vaccine, 2001, 19, 3778-3786.	1.7	47
17	Safety of a GM-CSF adjuvant-plasmid DNA malaria vaccine. Gene Therapy, 2001, 8, 1011-1023.	2.3	67
18	Electroporation-Facilitated Delivery of Plasmid DNA in Skeletal Muscle: Plasmid Dependence of Muscle Damage and Effect of Poloxamer 188. Molecular Therapy, 2001, 4, 407-415.	3.7	162

Jukka A Hartikka

#	Article	IF	CITATIONS
19	Development and Characterization of Lyophilized DNA Vaccine Formulations. , 2000, 29, 23-34.		1
20	Adjuvants for Plasmid DNA Vaccines. , 2000, 29, 185-196.		1
21	Enhancer and Promoter Chimeras in Plasmids Designed for Intramuscular Injection: A Comparative In Vivo and In Vitro Study. Human Gene Therapy, 1998, 9, 2545-2553.	1.4	20
22	Enhancer and Promoter Chimeras in Plasmids Designed for Intramuscular Injection: A Comparative In Vivo and In Vitro Study. Human Gene Therapy, 1998, 9, 2545-2553.	1.4	23
23	Quantification of Plasmid DNA Expression in Vivo. , 1998, , 343-367.		4
24	Spatial–temporal patterns of gene expression in mouse skeletal muscle after injection of lacZ plasmid DNA. Gene Therapy, 1997, 4, 648-663.	2.3	82
25	An Improved Plasmid DNA Expression Vector for Direct Injection into Skeletal Muscle. Human Gene Therapy, 1996, 7, 1205-1217.	1.4	333
26	A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11454-11459.	3.3	293
27	Inhibitors of Type IV Phosphodiesterases Reduce the Toxicity of MPTP in Substantia Nigra NeuronsIn Vivo. European Journal of Neuroscience, 1995, 7, 2431-2440.	1.2	49
28	Fibroblast Growth Factor-5 Promotes Differentiation of Cultured Rat Septal Cholinergic and Raphe Serotonergic Neurons: Comparison with the Effects of Neurotrophins. European Journal of Neuroscience, 1994, 6, 244-252.	1.2	58
29	Gene Therapy by Intramuscular Injection of Plasmid DNA: Studies on Firefly Luciferase Gene Expression in Mice. Human Gene Therapy, 1993, 4, 419-431.	1.4	438
30	Cyclic AMP, but not basic FGF, increases the in vitro survival of mesencephalic dopaminergic neurons and protects them from MPP+-induced degeneration. Journal of Neuroscience Research, 1992, 32, 190-201.	1.3	63
31	Authors' response to commentaries. Neurobiology of Aging, 1989, 10, 552-553.	1.5	4
32	Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiology of Aging, 1989, 10, 515-533.	1.5	470
33	Comparison of nerve growth factor's effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro. Journal of Neuroscience Research, 1988, 21, 352-364.	1.3	127
34	Role of Nerve Growth Factor in the Central Nervous System. , 1988, , 127-138.		7
35	Pharmacological activities in thermal proteins: Relationships in molecular evolution. International Journal of Quantum Chemistry, 1987, 32, 347-349.	1.0	9
36	Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neuroscience Letters, 1986, 69, 37-41.	1.0	289

Jukka A Hartikka

#	Article	IF	CITATIONS
37	Effect of thyroid hormone analogs on the activity of choline acetyltransferase in cultures of dissociated septal cells. Brain Research, 1986, 375, 413-416.	1.1	59
38	Nerve growth factor increases choline acetyl-transferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience, 1985, 14, 55-68.	1.1	493
39	Implantation of PC12 cells into the corpus striatum of rats with lesions of the dopaminergic nigrostriatal neurons. Brain Research, 1985, 348, 283-288.	1.1	78
40	Effects of Nerve Growth Factor on Cholinergic Neurons of the Rat Forebrain. Advances in Behavioral Biology, 1985, , 495-504.	0.2	1
41	Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Research, 1984, 293, 305-311.	1.1	452