
Miguel Ängel Martin-Acebes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/485779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Zika Virus: the Latest Newcomer. Frontiers in Microbiology, 2016, 7, 496.	1.5	167
3	Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Frontiers in Microbiology, 2017, 8, 1314.	1.5	152
4	West Nile Virus Replication Requires Fatty Acid Synthesis but Is Independent on Phosphatidylinositol-4-Phosphate Lipids. PLoS ONE, 2011, 6, e24970.	1.1	136
5	The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis. Journal of Virology, 2014, 88, 12041-12054.	1.5	125
6	Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Frontiers in Microbiology, 2014, 5, 266.	1.5	116
7	Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. Progress in Lipid Research, 2016, 64, 123-137.	5.3	116
8	The Race To Find Antivirals for Zika Virus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	86
9	West Nile virus: A re-emerging pathogen revisited. World Journal of Virology, 2012, 1, 51.	1.3	69
10	Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology, 2007, 369, 105-118.	1.1	66
11	Antibody-Dependent Enhancement and Zika: Real Threat or Phantom Menace?. Frontiers in Cellular and Infection Microbiology, 2018, 8, 44.	1.8	57
12	Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 307-315.	1.4	55
13	Antiviral Activity of Nordihydroguaiaretic Acid and Its Derivative Tetra- <i>O</i> -Methyl Nordihydroguaiaretic Acid against West Nile Virus and Zika Virus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	53
14	First Serological Evidence of West Nile Virus Activity in Horses in Serbia. Vector-Borne and Zoonotic Diseases, 2011, 11, 1303-1305.	0.6	52
15	Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology, 2006, 349, 409-421.	1.1	48
16	Limited susceptibility of mice to Usutu virus (USUV) infection and induction of flavivirus cross-protective immunity. Virology, 2015, 482, 67-71.	1.1	48
17	Inhibition of Enveloped Virus Infection of Cultured Cells by Valproic Acid. Journal of Virology, 2011, 85, 1267-1274.	1.5	46
18	Acid-dependent viral entry. Virus Research, 2012, 167, 125-137.	1.1	46

#	Article	IF	CITATIONS
19	A Single Amino Acid Substitution in the Capsid of Foot-and-Mouth Disease Virus Can Increase Acid Lability and Confer Resistance to Acid-Dependent Uncoating Inhibition. Journal of Virology, 2010, 84, 2902-2912.	1.5	44
20	Zika Virus: What Have We Learnt Since the Start of the Recent Epidemic?. Frontiers in Microbiology, 2017, 8, 1554.	1.5	44
21	Host sphingomyelin increases West Nile virus infection in vivo. Journal of Lipid Research, 2016, 57, 422-432.	2.0	43
22	A Vaccine Based on a Modified Vaccinia Virus Ankara Vector Expressing Zika Virus Structural Proteins Controls Zika Virus Replication in Mice. Scientific Reports, 2018, 8, 17385.	1.6	43
23	A West Nile virus mutant with increased resistance to acid-induced inactivation. Journal of General Virology, 2011, 92, 831-840.	1.3	41
24	Direct Activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 Inhibits Flavivirus Infection through Modification of Host Cell Lipid Metabolism. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	41
25	Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses, 2018, 10, 453.	1.5	41
26	A Single Amino Acid Substitution in the Capsid of Foot-and-Mouth Disease Virus Can Increase Acid Resistance. Journal of Virology, 2011, 85, 2733-2740.	1.5	40
27	Widespread distribution of hepatitis E virus in Spanish pig herds. BMC Research Notes, 2011, 4, 412.	0.6	38
28	Lipid Metabolism as a Source of Druggable Targets for Antiviral Discovery against Zika and Other Flaviviruses. Pharmaceuticals, 2019, 12, 97.	1.7	38
29	Protection of a Single Dose West Nile Virus Recombinant Subviral Particle Vaccine against Lineage 1 or 2 Strains and Analysis of the Cross-Reactivity with Usutu Virus. PLoS ONE, 2014, 9, e108056.	1.1	33
30	A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus. Vaccine, 2016, 34, 2066-2073.	1.7	32
31	Infection with Usutu Virus Induces an Autophagic Response in Mammalian Cells. PLoS Neglected Tropical Diseases, 2013, 7, e2509.	1.3	31
32	Prevalence of hepatitis E virus (HEV) antibodies in Serbian blood donors. Journal of Infection in Developing Countries, 2014, 8, 1322-1327.	0.5	30
33	The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1. Journal of Virology, 2015, 89, 5633-5642.	1.5	30
34	Membrane Topology and Cellular Dynamics of Foot-and-Mouth Disease Virus 3A Protein. PLoS ONE, 2014, 9, e106685.	1.1	29
35	Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerging Microbes and Infections, 2019, 8, 624-636.	3.0	29
36	Amino acid substitutions in the non-structural proteins 4A or 4B modulate the induction of autophagy in West Nile virus infected cells independently of the activation of the unfolded protein response. Frontiers in Microbiology, 2014, 5, 797.	1.5	27

#	Article	IF	CITATIONS
37	Characterization of Hepatitis E Virus Recombinant ORF2 Proteins Expressed by Vaccinia Viruses. Journal of Virology, 2012, 86, 7880-7886.	1.5	25
38	Pharmacological Inhibition of Protein Kinase C Reduces West Nile Virus Replication. Viruses, 2018, 10, 91.	1.5	25
39	Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Research, 2013, 99, 172-179.	1.9	24
40	Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus. Virology, 2008, 374, 432-443.	1.1	23
41	Protection of red-legged partridges (Alectoris rufa) against West Nile virus (WNV) infection after immunization with WNV recombinant envelope protein E (rE). Vaccine, 2013, 31, 4523-4527.	1.7	23
42	An Increase in Acid Resistance of Foot-and-Mouth Disease Virus Capsid Is Mediated by a Tyrosine Replacement of the VP2 Histidine Previously Associated with VPO Cleavage. Journal of Virology, 2014, 88, 3039-3042.	1.5	23
43	Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence, 2021, 12, 1145-1173.	1.8	22
44	Inhibition of herpes virus infection in oligodendrocyte cultured cells by valproic acid. Virus Research, 2016, 214, 71-79.	1.1	21
45	Prevalence of Hepatitis E Virus (HEV) Antibodies in Mexican Pigs. Food and Environmental Virology, 2016, 8, 156-159.	1.5	20
46	Zika virus infection confers protection against West Nile virus challenge in mice. Emerging Microbes and Infections, 2017, 6, 1-6.	3.0	20
47	Inhibition of West Nile Virus Multiplication in Cell Culture by Anti-Parkinsonian Drugs. Frontiers in Microbiology, 2016, 7, 296.	1.5	18
48	Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus. Virology, 2008, 380, 34-45.	1.1	17
49	Protection against West Nile Virus Infection in Mice after Inoculation with Type I Interferon-Inducing RNA Transcripts. PLoS ONE, 2012, 7, e49494.	1.1	17
50	Reconciling West Nile virus with the autophagic pathway. Autophagy, 2015, 11, 861-864.	4.3	17
51	Internalization of Swine Vesicular Disease Virus into Cultured Cells: a Comparative Study with Foot-and-Mouth Disease Virus. Journal of Virology, 2009, 83, 4216-4226.	1.5	13
52	Current Progress of Avian Vaccines Against West Nile Virus. Vaccines, 2019, 7, 126.	2.1	13
53	Antivirals against (Re)emerging Flaviviruses: Should We Target the Virus or the Host?. ACS Medicinal Chemistry Letters, 2022, 13, 5-10.	1.3	13
54	A Single Amino Acid Substitution in the Core Protein of West Nile Virus Increases Resistance to Acidotropic Compounds. PLoS ONE, 2013, 8, e69479.	1.1	11

#	Article	IF	CITATIONS
55	Experimental North American West Nile Virus Infection in the Red-legged Partridge (<i>Alectoris) Tj ETQq1 1 0.</i>	784314 rgBT 0.8	Qverlock
56	Cell density-dependent expression of viral antigens during persistence of foot-and-mouth disease virus in cell culture. Virology, 2010, 403, 47-55.	1,1	10
57	Foot-and-mouth disease virus particles inactivated with binary ethylenimine are efficiently internalized into cultured cells. Vaccine, 2011, 29, 9655-9662.	1.7	10
58	Clinical Infections by Herpesviruses in Patients Treated with Valproic Acid: A Nested Case-Control Study in the Spanish Primary Care Database, BIFAP. Journal of Clinical Medicine, 2019, 8, 1442.	1.0	10
59	Akt Kinase Intervenes in Flavivirus Replication by Interacting with Viral Protein NS5. Viruses, 2021, 13, 896.	1.5	10
60	Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Frontiers in Immunology, 2022, 13, 863831.	2.2	10
61	Plasma Membrane Phosphatidylinositol 4,5 Bisphosphate Is Required for Internalization of Foot-and-Mouth Disease Virus and Vesicular Stomatitis Virus. PLoS ONE, 2012, 7, e45172.	1.1	9
62	Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability. Veterinary Microbiology, 2017, 203, 275-279.	0.8	9
63	Modulation of foot-and-mouth disease virus pH threshold for uncoating correlates with differential sensitivity to inhibition of cellular Rab GTPases and decreases infectivity in vivo. Journal of General Virology, 2012, 93, 2382-2386.	1.3	8
64	Relevance of oxidative stress in inhibition of eIF2 alpha phosphorylation and stress granules formation during Usutu virus infection. PLoS Neglected Tropical Diseases, 2021, 15, e0009072.	1.3	8
65	A Recombinant Subviral Particle-Based Vaccine Protects Magpie (Pica pica) Against West Nile Virus Infection. Frontiers in Microbiology, 2019, 10, 1133.	1.5	7
66	Previous Usutu Virus Exposure Partially Protects Magpies (Pica pica) against West Nile Virus Disease But Does Not Prevent Horizontal Transmission. Viruses, 2021, 13, 1409.	1.5	7
67	Novel Nonnucleoside Inhibitors of Zika Virus Polymerase Identified through the Screening of an Open Library of Antikinetoplastid Compounds. Antimicrobial Agents and Chemotherapy, 2021, 65, e0089421.	1.4	7
68	Molecular docking and antiviral activities of plant derived compounds against zika virus. Microbial Pathogenesis, 2020, 149, 104540.	1.3	6
69	The combined vaccination protocol of DNA/MVA expressing Zika virus structural proteins as efficient inducer of T and B cell immune responses. Emerging Microbes and Infections, 2021, 10, 1441-1456.	3.0	6
70	Response: Commentary: Zika Virus: the Latest Newcomer. Frontiers in Microbiology, 2016, 7, 1398.	1.5	5
71	The Scientific Response to Zika Virus. Journal of Clinical Medicine, 2019, 8, 369.	1.0	4
72	First Complete Coding Sequence of a Spanish Isolate of Swine Vesicular Disease Virus. Genome Announcements, 2016, 4, .	0.8	3

#	Article	IF	CITATIONS
73	Editorial: Cell Organelle Exploitation by Viruses During Infection. Frontiers in Microbiology, 2021, 12, 675152.	1.5	3
74	Equine Rhinitis A Virus Mutants with Altered Acid Resistance Unveil a Key Role of VP3 and Intrasubunit Interactions in the Control of the pH Stability of the Aphthovirus Capsid. Journal of Virology, 2016, 90, 9725-9732.	1.5	2
75	Reply to Iannetta et al., "Azithromycin Shows Anti-Zika Virus Activity in Human Glial Cells― Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	2
76	Low Immune Cross-Reactivity between West Nile Virus and a Zika Virus Vaccine Based on Modified Vaccinia Virus Ankara. Pharmaceuticals, 2022, 15, 354.	1.7	2
77	The Amino Acid Substitution Q65H in the 2C Protein of Swine Vesicular Disease Virus Confers Resistance to Golgi Disrupting Drugs. Frontiers in Microbiology, 2016, 7, 612.	1.5	1
78	Dengue Virus Strikes Back: Increased Future Risk of Severe Dengue Disease in Humans as a Result of Previous Exposure to Zika Virus. Journal of Clinical Medicine, 2020, 9, 4060.	1.0	1
79	Negatively charged amino acids at the foot-and-mouth disease virus capsid reduce the virion-destabilizing effect of viral RNA at acidic pH. Scientific Reports, 2020, 10, 1657.	1.6	1
80	Antibodies to West Nile virus in Mexican pigs. Journal of Vector Borne Diseases, 2018, 55, 66.	0.1	1
81	Adaptive value of foot-and-mouth disease virus capsid substitutions with opposite effects on particle acid stability. Scientific Reports, 2021, 11, 23494.	1.6	0