Najeh Maissar Khalil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856922/publications.pdf

Version: 2024-02-01

50 2,005 25 44
papers citations h-index g-index

50 50 50 3449 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Chitosan-coated poly(\tilde{N} "-caprolactone) nanocapsules for mucoadhesive applications of perillyl alcohol. Soft Materials, 2022, 20, 1-11.	1.7	8
2	Polyethylene Glycol-Stabilized Zein Nanoparticles Containing Gallic Acid. Food Technology and Biotechnology, 2022, 60, 145-154.	2.1	7
3	Intranasal administration of perillyl alcohol–loaded nanoemulsion and pharmacokinetic study of its metabolite perillic acid in plasma and brain of rats using ultraâ€performance liquid chromatography/tandem mass spectrometry. Biomedical Chromatography, 2021, 35, e5037.	1.7	7
4	Optimized Chitosan-Coated Gliadin Nanoparticles Improved the Hesperidin Cytotoxicity over Tumor Cells. Brazilian Archives of Biology and Technology, 2021, 64, .	0.5	4
5	Chitosan modified poly (lactic acid) nanoparticles increased the ursolic acid oral bioavailability. International Journal of Biological Macromolecules, 2021, 172, 133-142.	7.5	27
6	Nanoparticles as a Tool for Broadening Antifungal Activities. Current Medicinal Chemistry, 2021, 28, 1841-1873.	2.4	11
7	Chitosan Nanoparticles Potentiate the in vitro and in vivo Effects of Curcumin and other Natural Compounds. Current Medicinal Chemistry, 2021, 28, 4935-4953.	2.4	5
8	Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid. International Journal of Biological Macromolecules, 2019, 138, 244-251.	7.5	38
9	Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity. Food Hydrocolloids, 2019, 94, 411-417.	10.7	120
10	Effects of Silver Nanoparticle Exposure to the Testicular Antioxidant System during the Prepubertal Rat Stage. Chemical Research in Toxicology, 2019, 32, 986-994.	3.3	15
11	Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B. Mycopathologia, 2018, 183, 659-668.	3.1	27
12	Bovine serum albumin nanoparticles improve the antitumour activity of curcumin in a murine melanoma model. Journal of Microencapsulation, 2018, 35, 467-474.	2.8	16
13	Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery. Carbohydrate Polymers, 2018, 202, 345-354.	10.2	55
14	Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 993-1002.	2.8	81
15	PLGA Nanoparticles and Polysorbate-80-Coated PLGA Nanoparticles Increase the In vitro Antioxidant Activity of Melatonin. Current Drug Delivery, 2018, 15, 554-563.	1.6	20
16	Preparation and In vitro Evaluation of Efficacy and Toxicity of Polysorbate 80-coated Bovine Serum Albumin Nanoparticles containing Amphotericin B. Current Drug Delivery, 2018, 15, 1055-1063.	1.6	3
17	Curcumin, a Multitarget Phytochemical. Studies in Natural Products Chemistry, 2017, 53, 243-276.	1.8	23
18	Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles. Journal of Pharmaceutical Analysis, 2017, 7, 388-393.	5.3	27

#	Article	IF	Citations
19	Bovine serum albumin-based nanoparticles containing resveratrol: Characterization and antioxidant activity. Journal of Drug Delivery Science and Technology, 2017, 39, 147-155.	3.0	45
20	Preparation, physicochemical characterization and antioxidant activity of diphenyl diselenide-loaded poly(lactic acid) nanoparticles. Journal of Trace Elements in Medicine and Biology, 2017, 39, 176-185.	3.0	12
21	A stability-indicating high performance liquid chromatography method to determine apocynin in nanoparticles. Journal of Pharmaceutical Analysis, 2017, 7, 129-133.	5.3	8
22	Poly(lactic acid) nanoparticles loaded with ursolic acid: Characterization and in vitro evaluation of radical scavenging activity and cytotoxicity. Materials Science and Engineering C, 2017, 71, 156-166.	7.3	24
23	A stability-indicating HPLC-PDA method for the determination of ferulic acid in chitosan-coated poly(lactide-co-glycolide) nanoparticles. Brazilian Journal of Pharmaceutical Sciences, 2017, 53, .	1.2	7
24	Exploring the Role of Nanoparticles in Amphotericin B Delivery. Current Pharmaceutical Design, 2017, 23, 509-521.	1.9	28
25	Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design. Pharmaceutical Development and Technology, 2016, 21, 140-146.	2.4	16
26	Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity. Materials Science and Engineering C, 2016, 62, 1-8.	7.3	40
27	Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. European Journal of Pharmaceutical Sciences, 2016, 84, 83-91.	4.0	63
28	Bovine Serum Albumin Nanoparticles Containing Quercetin: Characterization and Antioxidant Activity. Journal of Nanoscience and Nanotechnology, 2016, 16, 1346-1353.	0.9	34
29	Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Materials Science and Engineering C, 2016, 60, 126-134.	7. 3	84
30	Tamoxifen-loaded poly(L-lactide) nanoparticles: Development, characterization and in vitro evaluation of cytotoxicity. Materials Science and Engineering C, 2016, 60, 135-142.	7.3	48
31	Poly(L-lactide) Nanoparticles Reduce Amphotericin B Cytotoxicity and Maintain Its <l>ln Vitro</l> Antifungal Activity. Journal of Nanoscience and Nanotechnology, 2015, 15, 848-854.	0.9	33
32	Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design. Journal of Nanoscience and Nanotechnology, 2015, 15, 10173-10182.	0.9	6
33	Bovine Serum Albumin Nanoparticles Containing Amphotericin B: Characterization, Cytotoxicity and <l>In Vitro</l> Antifungal Evaluation. Journal of Nanoscience and Nanotechnology, 2015, 15, 10183-10188.	0.9	26
34	Preliminary in vitro and ex vivo evaluation of afzelin, kaempferitrin and pterogynoside action over free radicals and reactive oxygen species. Archives of Pharmacal Research, 2015, 38, 1168-1177.	6.3	21
35	Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine, 2015, 10, 1127-1138.	3.3	99
36	Determination of amphotericin B in PLA-PEG blend nanoparticles by HPLC-PDA. Brazilian Journal of Pharmaceutical Sciences, 2014, 50, 859-868.	1.2	7

#	Article	IF	Citations
37	Nanotechnological Strategies for the Treatment of Neglected Diseases. Current Pharmaceutical Design, 2013, 19, 7316-7329.	1.9	30
38	Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids and Surfaces B: Biointerfaces, 2013, 101, 353-360.	5.0	327
39	Development and Validation of an HPLC Method Using Fluorescence Detection for the Quantitative Determination of Curcumin in PLGA and PLGA-PEG Nanoparticles. Current Pharmaceutical Analysis, 2012, 8, 324-333.	0.6	19
40	Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid. Food Chemistry, 2012, 133, 1001-1005.	8.2	60
41	A quantitative validated method using liquid chromatography and chemometric analysis for evaluation of raw material oF Maytenus ilicifolia (Schrad.) Planch., Celastraceae. Quimica Nova, 2012, 35, 327-331.	0.3	3
42	Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opinion on Drug Delivery, 2011, 8, 95-112.	5.0	33
43	Intranasal delivery of zidovudine by PLA and PLA–PEG blend nanoparticles. International Journal of Pharmaceutics, 2010, 395, 266-271.	5.2	60
44	Colloidal Polymeric Nanoparticles and Brain Drug Delivery. Current Drug Delivery, 2009, 6, 261-273.	1.6	15
45	Zidovudine-loaded PLA and PLA–PEG blend nanoparticles: Influence of polymer type on phagocytic uptake by polymorphonuclear cells. Journal of Pharmaceutical Sciences, 2009, 98, 257-267.	3. 3	80
46	Antioxidant activity, ascorbic acid and total phenol of exotic fruits occurring in Brazil. International Journal of Food Sciences and Nutrition, 2009, 60, 439-448.	2.8	32
47	Flavonols from Pterogyne nitens and their evaluation as myeloperoxidase inhibitors. Phytochemistry, 2008, 69, 1739-1744.	2.9	67
48	The effect of nonâ€surgical periodontal therapy on peroxidase activity in diabetic patients: a case–control pilot study. Journal of Clinical Periodontology, 2008, 35, 799-806.	4.9	29
49	Colloidal Carriers for Ophthalmic Drug Delivery. Current Drug Targets, 2005, 6, 363-371.	2.1	131
50	Effect of the Isocoumarin Paepalantine on the Luminol and Lucigenin Amplified Chemiluminescence of Rat Neutrophils. Biological and Pharmaceutical Bulletin, 2003, 26, 905-908.	1.4	24