Max A Alekseyev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856837/publications.pdf

Version: 2024-02-01

516215 214527 23,713 60 16 47 citations g-index h-index papers 69 69 69 30862 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 2012, 19, 455-477.	0.8	20,193
2	Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products. Journal of Computational Biology, 2013, 20, 714-737.	0.8	1,235
3	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles (i) mosquitoes. Science, 2015, 347, 1258522.</i>	6.0	492
4	Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. Lecture Notes in Computer Science, 2013, , 158-170.	1.0	439
5	BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics, 2013, 14, S7.	1.2	429
6	Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies. BMC Biology, 2020, 18, 1.	1.7	177
7	Splicing graphs and EST assembly problem. Bioinformatics, 2002, 18, S181-S188.	1.8	172
8	Breakpoint graphs and ancestral genome reconstructions. Genome Research, 2009, 19, 943-957.	2.4	111
9	Reconstruction of Ancestral Genomes in Presence of Gene Gain and Loss. Journal of Computational Biology, 2016, 23, 150-164.	0.8	58
10	Multi-break rearrangements and chromosomal evolution. Theoretical Computer Science, 2008, 395, 193-202.	0.5	55
11	Are There Rearrangement Hotspots in the Human Genome?. PLoS Computational Biology, 2007, 3, e209.	1.5	36
12	Colored de Bruijn Graphs and the Genome Halving Problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 98-107.	1.9	31
13	Multi-Break Rearrangements and Breakpoint Re-Uses: From Circular to Linear Genomes. Journal of Computational Biology, 2008, 15, 1117-1131.	0.8	25
14	Comparative genomics reveals birth and death of fragile regions in mammalian evolution. Genome Biology, 2010, 11, R117.	13.9	23
15	Phylogenetic analysis of genome rearrangements among five mammalian orders. Molecular Phylogenetics and Evolution, 2012, 65, 871-882.	1.2	23
16	Whole Genome Duplications and Contracted Breakpoint Graphs. SIAM Journal on Computing, 2007, 36, 1748-1763.	0.8	18
17	Pathset Graphs: A Novel Approach for Comprehensive Utilization of Paired Reads in Genome Assembly. Journal of Computational Biology, 2013, 20, 359-371.	0.8	14
18	TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response. PLoS ONE, 2015, 10, e0129566.	1.1	13

#	Article	lF	Citations
19	Scaffold assembly based on genome rearrangement analysis. Computational Biology and Chemistry, 2015, 57, 46-53.	1.1	12
20	Chromosome-level genome assemblies of the malaria vectors <i>Anopheles coluzzii</i> and <i>Anopheles arabiensis</i> . GigaScience, 2021, 10, .	3.3	12
21	On Approximation of Groups, Group Actions, and Hopf Algebras. Journal of Mathematical Sciences, 2001, 107, 4305-4332.	0.1	11
22	CAMSA: a tool for comparative analysis and merging of scaffold assemblies. BMC Bioinformatics, 2017, 18, 496.	1.2	11
23	Decoding Synteny Blocks and Large-Scale Duplications in Mammalian and Plant Genomes. Lecture Notes in Computer Science, 2009, , 220-232.	1.0	9
24	Transcriptome sequencing based annotation and homologous evidence based scaffolding of Anguilla japonica draft genome. BMC Genomics, 2016, 17, 13.	1.2	9
25	A Computational Method for the Rate Estimation of Evolutionary Transpositions. Lecture Notes in Computer Science, 2015, , 471-480.	1.0	8
26	Estimation of the true evolutionary distance under the fragile breakage model. BMC Genomics, 2017, 18, 356.	1.2	8
27	On the Intersections of Fibonacci, Pell, and Lucas Numbers. Integers, 2011, 11, .	0.3	7
28	On the Minimal Teaching Sets of Two-Dimensional Threshold Functions. SIAM Journal on Discrete Mathematics, 2015, 29, 157-165.	0.4	7
29	A unified ILP framework for core ancestral genome reconstruction problems. Bioinformatics, 2020, 36, 2993-3003.	1.8	6
30	On the Number of Two-Dimensional Threshold Functions. SIAM Journal on Discrete Mathematics, 2010, 24, 1617-1631.	0.4	5
31	Comparative genomics meets topology: a novel view on genome median and halving problems. BMC Bioinformatics, 2016, 17, 418.	1.2	5
32	On pairwise distances and median score of three genomes under DCJ. BMC Bioinformatics, 2012, 13, S1.	1.2	4
33	Linearization of Median Genomes Under the Double-Cut-and-Join-Indel Model. Evolutionary Bioinformatics, 2019, 15, 117693431882053.	0.6	4
34	A Unified ILP Framework for Genome Median, Halving, and Aliquoting Problems Under DCJ. Lecture Notes in Computer Science, 2017, , 156-178.	1.0	4
35	Pathset Graphs: A Novel Approach for Comprehensive Utilization of Paired Reads in Genome Assembly. Lecture Notes in Computer Science, 2012, , 200-212.	1.0	3
36	Estimation of the true evolutionary distance under the fragile breakage model. , 2015, , .		3

#	Article	IF	CITATIONS
37	Generalized Hultman Numbers and Cycle Structures of Breakpoint Graphs. Journal of Computational Biology, 2017, 24, 93-105.	0.8	3
38	Linearization of Median Genomes under DCJ. Lecture Notes in Computer Science, 2014, , 97-106.	1.0	2
39	Implicit Transpositions in DCJ Scenarios. Frontiers in Genetics, 2017, 8, 212.	1.1	2
40	Combinatorial Scoring of Phylogenetic Trees and Networks Based on Homoplasy-Free Characters. Journal of Computational Biology, 2018, 25, 1203-1219.	0.8	2
41	Decoding the Genomic Architecture of Mammalian and Plant Genomes: Synteny Blocks and Large-scale Duplications. Communications in Information and Systems, 2010, 10, 1-22.	0.3	2
42	Linearization of Ancestral Genomes with Duplicated Genes. , 2020, , .		2
43	5. Solving the Tower of Hanoi with Random Moves. , 2016, , 65-80.		1
44	On p-Adic Approximation of Sums of Binomial Coefficients. Journal of Mathematical Sciences, 2018, 233, 626-634.	0.1	1
45	Combinatorial Scoring of Phylogenetic Networks. Lecture Notes in Computer Science, 2016, , 560-572.	1.0	1
46	Genome Halving Problem Revisited. Lecture Notes in Computer Science, 2004, , 1-15.	1.0	1
47	ON PARTITIONS INTO SQUARES OF DISTINCT INTEGERS WHOSE RECIPROCALS SUM TO 1., 2019, , 213-221.		1
48	Multi-break Rearrangements: From Circular to Linear Genomes. Lecture Notes in Computer Science, 2007, , 1-15.	1.0	0
49	CAMSA: A tool for comparative analysis and merging of scaffold assemblies. , 2016, , .		0
50	On problem of orienting ordered scaffolds. , 2017, , .		0
51	10. Making Walks Count: From Silent Circles to Hamiltonian Cycles. , 2018, , 157-168.		0
52	Implicit Transpositions in DCJ Scenarios. , 2018, , .		0
53	A Rapid Exact Solution for the Guided Genome Halving Problem. , 2018, , .		0
54	A Uniform Theory of Adequate Subgraphs for the Genome Median, Halving, and Aliquoting Problems. Lecture Notes in Computer Science, 2019, , 97-111.	1.0	0

#	Article	IF	Citations
55	Computing solutions to the congruence 1n+2n+â<\(^\text{+nna}\%\);p(modn). Discrete Applied Mathematics, 2020, 286, 3-9.	0.5	0
56	Limited Lifespan of Fragile Regions in Mammalian Evolution. Lecture Notes in Computer Science, 2010, , $198-215$.	1.0	0
57	Generalized Hultman Numbers and the Distribution of Multi-break Distances. Lecture Notes in Computer Science, 2015, , 3-12.	1.0	0
58	Solving the Tower of Hanoi with Random Moves. , 2015, , .		0
59	MAKING WALKS COUNT:., 0,, 157-168.		0
60	Orienting Ordered Scaffolds: Complexity and Algorithms. SN Computer Science, 2022, 3, .	2.3	0