Oleg Prezhdo

List of Publications by Citations

Source: https://exaly.com/author-pdf/4856804/oleg-prezhdo-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 20,306 455 122 h-index g-index citations papers 22,763 7.5 7.73 495 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
455	Trajectory surface hopping in the time-dependent Kohn-Sham approach for electron-nuclear dynamics. <i>Physical Review Letters</i> , 2005 , 95, 163001	7.4	505
454	Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. <i>Annual Review of Physical Chemistry</i> , 2007 , 58, 143-84	15.7	487
453	The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 4959-72	6.4	413
452	Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. <i>Chemical Reviews</i> , 2013 , 113, 4496-565	68.1	392
451	Decoherence-induced surface hopping. <i>Journal of Chemical Physics</i> , 2012 , 137, 22A545	3.9	370
450	Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherence Effects, Multiexcitonic States, and Field-Matter Interaction. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 789-804	6.4	332
449	Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. <i>Journal of Chemical Physics</i> , 1996 , 104, 5942-5955	3.9	299
448	Mean-field molecular dynamics with surface hopping. <i>Journal of Chemical Physics</i> , 1997 , 107, 825-834	3.9	286
447	Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3884-90	16.4	272
446	Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations. Journal of Chemical Physics, 1997 , 107, 5863-5878	3.9	256
445	Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin-TiO2 interface. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7941-51	16.4	242
444	Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. <i>Nano Letters</i> , 2010 , 10, 3237-42	11.5	222
443	Photo-induced charge separation across the graphene-TiO2 interface is faster than energy losses: a time-domain ab initio analysis. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14238-48	16.4	206
442	Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation. <i>ACS Nano</i> , 2009 , 3, 93-9	16.7	206
441	Recent Progress in Surface Hopping: 2011-2015. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2100-12	6.4	200
440	Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2. ACS Nano, 2014 , 8, 10931-40	16.7	192
439	Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2. <i>Journal of the American Chemical Society</i> , 2007 , 129, 8528-43	16.4	192

(2013-2008)

438	Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. <i>Chemical Physics Letters</i> , 2008 , 458, 113-116	2.5	182
437	Quantum Zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. <i>Physical Review Letters</i> , 2013 , 110, 180404	7.4	181
436	Instantaneous generation of charge-separated state on TiOlburface sensitized with plasmonic nanoparticles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4343-54	16.4	180
435	Electronic structure and spectra of catechol and alizarin in the gas phase and attached to titanium. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 365-73	3.4	178
434	Mixing quantum and classical mechanics. <i>Physical Review A</i> , 1997 , 56, 162-175	2.6	172
433	Quantum Coherence Facilitates Efficient Charge Separation at a MoS2/MoSe2 van der Waals Junction. <i>Nano Letters</i> , 2016 , 16, 1996-2003	11.5	170
432	Colloidal semiconductor quantum dots with tunable surface composition. <i>Nano Letters</i> , 2012 , 12, 4465-	- 71 1.5	165
431	Nonadiabatic Molecular Dynamics Simulation of Light-Induced Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor Acceptor Journal of Physical Chemistry B, 2002, 106, 804	7 ³ 8054	1 ⁶⁵
430	Relationship between Quantum Decoherence Times and Solvation Dynamics in Condensed Phase Chemical Systems. <i>Physical Review Letters</i> , 1998 , 81, 5294-5297	7.4	162
429	Auger-assisted electron transfer from photoexcited semiconductor quantum dots. <i>Nano Letters</i> , 2014 , 14, 1263-9	11.5	160
428	Photoinduced electron dynamics at the chromophoresemiconductor interface: A time-domain ab initio perspective. <i>Progress in Surface Science</i> , 2009 , 84, 30-68	6.6	155
427	Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field. <i>Chemical Reviews</i> , 2015 , 115, 5797-890	68.1	152
426	Regarding the validity of the time-dependent Kohn-Sham approach for electron-nuclear dynamics via trajectory surface hopping. <i>Journal of Chemical Physics</i> , 2011 , 134, 024102	3.9	149
425	The two-pathway model for the catch-slip transition in biological adhesion. <i>Biophysical Journal</i> , 2005 , 89, 1446-54	2.9	149
424	Quantum backreaction through the Bohmian particle. <i>Physical Review Letters</i> , 2001 , 86, 3215-9	7.4	140
423	Mean field approximation for the stochastic Schrllinger equation. <i>Journal of Chemical Physics</i> , 1999 , 111, 8366-8377	3.9	137
422	A Simple Solution to the Trivial Crossing Problem in Surface Hopping. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 713-9	6.4	129
421	Persistent Electronic Coherence Despite Rapid Loss of Electron Nuclear Correlation. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3857-3864	6.4	128

420	Acetonitrile boosts conductivity of imidazolium ionic liquids. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 7719-27	3.4	123
419	Scanning tunneling microscopy of DNA-wrapped carbon nanotubes. <i>Nano Letters</i> , 2009 , 9, 12-7	11.5	121
418	Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface. <i>Nano Letters</i> , 2017 , 17, 6435-6442	11.5	120
417	Dynamics of the photoexcited electron at the chromophore-semiconductor interface. <i>Accounts of Chemical Research</i> , 2008 , 41, 339-48	24.3	118
416	Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface. Journal of the American Chemical Society, 2014 , 136, 1599-608	16.4	115
415	Nonradiative quenching of fluorescence in a semiconducting carbon nanotube: a time-domain ab initio study. <i>Physical Review Letters</i> , 2008 , 100, 197402	7.4	115
414	Hole Trapping by Iodine Interstitial Defects Decreases Free Carrier Losses in Perovskite Solar Cells: A Time-Domain Ab Initio Study. <i>ACS Energy Letters</i> , 2017 , 2, 1270-1278	20.1	114
413	Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19240-9	16.4	114
412	Maximizing Singlet Fission by Intermolecular Packing. Journal of Physical Chemistry Letters, 2014, 5, 334	565β	113
411	Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots. ACS Nano, 2012, 6, 651	5-22. 9	113
410	Moderate Humidity Delays Electron-Hole Recombination in Hybrid Organic-Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3215-22	6.4	109
409	Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies. <i>Accounts of Chemical Research</i> , 2009 , 42, 2005-16	24.3	108
408	Guest⊞ost Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response. Journal of Physical Chemistry C, 2008 , 112, 4355-4363	3.8	105
407	Dopants Control Electron-Hole Recombination at Perovskite-TiOIInterfaces: Ab Initio Time-Domain Study. <i>ACS Nano</i> , 2015 , 9, 11143-55	16.7	103
406	Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. <i>Annual Review of Physical Chemistry</i> , 2015 , 66, 549-79	15.7	103
405	Quantum anti-zeno acceleration of a chemical reaction. <i>Physical Review Letters</i> , 2000 , 85, 4413-7	7.4	103
404	Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6707-671	7 ^{16.4}	101
403	Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence. <i>ACS Nano</i> , 2009 , 3, 2487-94	16.7	101

(2000-2007)

402	Ab Initio Time-Domain Study of Phonon-Assisted Relaxation of Charge Carriers in a PbSe Quantum Dot. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4871-4878	3.8	101	
401	Donor-Acceptor Interaction Determines the Mechanism of Photoinduced Electron Injection from Graphene Quantum Dots into TiO: Estacking Supersedes Covalent Bonding. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2619-2629	16.4	100	
400	Global Flux Surface Hopping Approach for Mixed Quantum-Classical Dynamics. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 3598-605	6.4	100	
399	Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. <i>Science Advances</i> , 2020 , 6, eaaw7453	14.3	99	
398	Water boiling inside carbon nanotubes: toward efficient drug release. ACS Nano, 2011, 5, 5647-55	16.7	97	
397	Chlorine doping reduces electron-hole recombination in lead iodide perovskites: time-domain ab initio analysis. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4463-9	6.4	96	
396	Charge Separation and Recombination in Two-Dimensional MoS2/WS2: Time-Domain ab Initio Modeling. <i>Chemistry of Materials</i> , 2017 , 29, 2466-2473	9.6	94	
395	Quantized Hamilton dynamics. <i>Journal of Chemical Physics</i> , 2000 , 113, 6557-6565	3.9	94	
394	Control of Charge Recombination in Perovskites by Oxidation State of Halide Vacancy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15753-15763	16.4	94	
393	Temperature independence of the photoinduced electron injection in dye-sensitized TiO2 rationalized by ab initio time-domain density functional theory. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9756-62	16.4	92	
392	Sulfur Adatom and Vacancy Accelerate Charge Recombination in MoS but by Different Mechanisms: Time-Domain Ab Initio Analysis. <i>Nano Letters</i> , 2017 , 17, 7962-7967	11.5	92	
391	Ultrafast Dynamics of Photongenerated Holes at a CHOH/TiO Rutile Interface. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13740-13749	16.4	92	
390	Nonadiabatic dynamics of positive charge during photocatalytic water splitting on GaN(10-10) surface: charge localization governs splitting efficiency. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8682-91	16.4	90	
389	Generation of Multiple Excitons in PbSe and CdSe Quantum Dots by Direct Photoexcitation: First-Principles Calculations on Small PbSe and CdSe Clusters. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18291-18294	3.8	90	
388	Time-domain ab initio simulation of electron and hole relaxation dynamics in a single-wall semiconducting carbon nanotube. <i>Physical Review Letters</i> , 2006 , 96, 187401	7.4	90	
387	What Makes the Photocatalytic CO2 Reduction on N-Doped Ta2O5 Efficient: Insights from Nonadiabatic Molecular Dynamics. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11517-25	16.4	89	
386	Ionic and Molecular Liquids: Working Together for Robust Engineering. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1423-31	6.4	89	
385	Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. <i>Biochemistry</i> , 2000 , 39, 11370-80	3.2	89	

384	Ab initio nonadiabatic molecular dynamics of wet-electrons on the TiO(2) surface. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15483-91	16.4	88
383	Halide Composition Controls Electron-Hole Recombination in Cesium-Lead Halide Perovskite Quantum Dots: A Time Domain Ab Initio Study. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1872-1879	6.4	87
382	Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. <i>Nano Letters</i> , 2018 , 18, 2459-2466	11.5	85
381	Time-domain ab initio study of Auger and phonon-assisted auger processes in a semiconductor quantum dot. <i>Nano Letters</i> , 2011 , 11, 1845-50	11.5	85
380	Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1-6	6.4	84
379	Ab initio study of vibrational dephasing of electronic excitations in semiconducting carbon nanotubes. <i>Nano Letters</i> , 2007 , 7, 3260-5	11.5	84
378	Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots: an ab initio time-domain study. <i>ACS Nano</i> , 2012 , 6, 1239-50	16.7	83
377	Thermally Assisted Sub-10 fs Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. <i>Advanced Materials</i> , 2004 , 16, 240-244	24	83
376	Nonadiabatic Molecular Dynamics for Thousand Atom Systems: A Tight-Binding Approach toward PYXAID. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 1436-48	6.4	82
375	Spin Drbit Interactions Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites. <i>ACS Energy Letters</i> , 2018 , 3, 2159-2166	20.1	82
374	Solvent Mode Participation in the Nonradiative Relaxation of the Hydrated Electron. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 17094-17102		81
373	Superoxide/Peroxide Chemistry Extends Charge Carriers' Lifetime but Undermines Chemical Stability of CHNHPbI Exposed to Oxygen: Time-Domain ab Initio Analysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5798-5807	16.4	80
372	Multiple excitons and the electronphonon bottleneck in semiconductor quantum dots: An ab initio perspective. <i>Chemical Physics Letters</i> , 2008 , 460, 1-9	2.5	80
371	Quantized Hamilton Dynamics. <i>Theoretical Chemistry Accounts</i> , 2006 , 116, 206-218	1.9	80
370	Ab Initio Study of Temperature and Pressure Dependence of Energy and Phonon-Induced Dephasing of Electronic Excitations in CdSe and PbSe Quantum Dots. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7800-7808	3.8	78
369	Ultrafast vibrationally-induced dephasing of electronic excitations in PbSe quantum dots. <i>Nano Letters</i> , 2006 , 6, 2295-300	11.5	78
368	Soft Lattice and Defect Covalency Rationalize Tolerance of tcsPbI Perovskite Solar Cells to Native Defects. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6435-6441	16.4	72
367	Coherence penalty functional: a simple method for adding decoherence in Ehrenfest dynamics. Journal of Chemical Physics, 2014 , 140, 194107	3.9	70

(2018-2015)

366	Mixed quantum-classical dynamics for charge transport in organics. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 12395-406	3.6	69	
365	Theoretical aspects of the biological catch bond. <i>Accounts of Chemical Research</i> , 2009 , 42, 693-703	24.3	68	
364	Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15557-15566	16.4	66	
363	Heat-driven release of a drug molecule from carbon nanotubes: a molecular dynamics study. Journal of Physical Chemistry B, 2010 , 114, 13481-6	3.4	65	
362	Lewis Base Passivation of Hybrid Halide Perovskites Slows Electron-Hole Recombination: Time-Domain Ab Initio Analysis. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1164-1171	6.4	64	
361	Interplay between Localized and Free Charge Carriers Can Explain Hot Fluorescence in the CHNHPbBr Perovskite: Time-Domain Ab Initio Analysis. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17327-17333	16.4	64	
360	Delocalized Impurity Phonon Induced Electron-Hole Recombination in Doped Semiconductors. <i>Nano Letters</i> , 2018 , 18, 1592-1599	11.5	63	
359	Ab initio study of exciton transfer dynamics from a core@hell semiconductor quantum dot to a porphyrin-sensitizer. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 190, 342-351	4.7	63	
358	Aromaticity indices revisited: refinement and application to certain five-membered ring heterocycles. <i>Tetrahedron</i> , 2001 , 57, 5715-5729	2.4	63	
357	Strong Interaction at the Perovskite/TiO2 Interface Facilitates Ultrafast Photoinduced Charge Separation: A Nonadiabatic Molecular Dynamics Study. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 3797	-3806	60	
356	Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction. <i>Nano Letters</i> , 2014 , 14, 3335-41	11.5	59	
355	Defects are needed for fast photo-induced electron transfer from a nanocrystal to a molecule: time-domain ab initio analysis. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18892-900	16.4	58	
354	Theoretical Study of Electron P honon Relaxation in PbSe and CdSe Quantum Dots: Evidence for Phonon Memory. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 21641-21651	3.8	58	
353	Uniform diffusion of acetonitrile inside carbon nanotubes favors supercapacitor performance. <i>Nano Letters</i> , 2008 , 8, 2126-30	11.5	58	
352	Influence of Defects on Excited-State Dynamics in Lead Halide Perovskites: Time-Domain ab Initio Studies. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 3788-3804	6.4	57	
351	Nanoscale carbon greatly enhances mobility of a highly viscous ionic liquid. <i>ACS Nano</i> , 2014 , 8, 8190-7	16.7	57	
350	Plasmon-Mediated Electron Injection from Au Nanorods into MoS2: Traditional versus Photoexcitation Mechanism. <i>CheM</i> , 2018 , 4, 1112-1127	16.2	56	
349	Why Chemical Vapor Deposition Grown MoS Samples Outperform Physical Vapor Deposition Samples: Time-Domain ab Initio Analysis. <i>Nano Letters</i> , 2018 , 18, 4008-4014	11.5	56	

348	Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites. Journal of the American Chemical Society, 2020 , 142, 3060-3068	16.4	55
347	Minimizing Electron-Hole Recombination on TiO2 Sensitized with PbSe Quantum Dots: Time-Domain Ab Initio Analysis. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2941-6	6.4	55
346	Role of Methylammonium Orientation in Ion Diffusion and CurrentWoltage Hysteresis in the CH3NH3PbI3 Perovskite. <i>ACS Energy Letters</i> , 2017 , 2, 1997-2004	20.1	55
345	Mono-Elemental Properties of 2D Black Phosphorus Ensure Extended Charge Carrier Lifetimes under Oxidation: Time-Domain Ab Initio Analysis. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1083-1	ა მ	55
344	Quantized Hamilton dynamics for a general potential. <i>Journal of Chemical Physics</i> , 2002 , 116, 4450-4461	3.9	54
343	Nonadiabatic charge dynamics in novel solar cell materials. <i>Wiley Interdisciplinary Reviews:</i> Computational Molecular Science, 2017 , 7, e1305	7.9	53
342	Symmetry Breaking at MAPbI Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain ab Initio Analysis. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1617-1623	6.4	53
341	Increased Lattice Stiffness Suppresses Nonradiative Charge Recombination in MAPbI3 Doped with Larger Cations: Time-Domain Ab Initio Analysis. <i>ACS Energy Letters</i> , 2018 , 3, 2070-2076	20.1	53
340	Ab initio time-domain study of the triplet state in a semiconducting carbon nanotube: intersystem crossing, phosphorescence time, and line width. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15648-51	16.4	53
339	Understanding Hematite Doping with Group IV Elements: A DFT+U Study. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 26303-26310	3.8	52
338	Fewest Switches Surface Hopping in Liouville Space. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3827	-3634	51
337	Classical mapping for second-order quantized Hamiltonian dynamics. <i>Journal of Chemical Physics</i> , 2002 , 117, 2995-3002	3.9	51
336	Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces. <i>Physical Review B</i> , 2018 , 97,	3.3	51
335	Auger-mediated electron relaxation is robust to deep hole traps: time-domain ab initio study of CdSe quantum dots. <i>Nano Letters</i> , 2015 , 15, 2086-91	11.5	50
334	Confinement by carbon nanotubes drastically alters the boiling and critical behavior of water droplets. <i>ACS Nano</i> , 2012 , 6, 2766-73	16.7	50
333	Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2017 , 8, 4129-4139	6.4	49
332	Nonadiabatic Ensemble Simulations of cis-Stilbene and cis-Azobenzene Photoisomerization. Journal of Chemical Theory and Computation, 2014 , 10, 14-23	6.4	49
331	Macroscopic order and electro-optic response of dipolar chromophore-polymer materials. <i>ChemPhysChem</i> , 2004 , 5, 1821-30	3.2	49

(2013-2017)

330	Herroelectric Alignment of Organic Cations Inhibits Nonradiative Electron-Hole Recombination in Hybrid Perovskites: Ab Initio Nonadiabatic Molecular Dynamics. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 812-818	6.4	48
329	Microscopic structure and dynamics of LiBF4 solutions in cyclic and linear carbonates. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 14563-71	3.4	47
328	A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 19345-54	3.6	47
327	Quantized mean-field approximation. <i>Chemical Physics Letters</i> , 2001 , 346, 463-469	2.5	47
326	Extending Carrier Lifetimes in Lead Halide Perovskites with Alkali Metals by Passivating and Eliminating Halide Interstitial Defects. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4684-4690	16.4	47
325	Time-Domain ab Initio Analysis Rationalizes the Unusual Temperature Dependence of Charge Carrier Relaxation in Lead Halide Perovskite. <i>ACS Energy Letters</i> , 2018 , 3, 2713-2720	20.1	47
324	Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots. ACS Nano, 2015, 9, 9106-16	16.7	44
323	DFT Simulation and Vibrational Analysis of the IR and Raman Spectra of a CdSe Quantum Dot Capped by Methylamine and Trimethylphosphine Oxide Ligands. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 14674-14681	3.8	44
322	Force-induced deformations and stability of biological bonds. <i>Physical Review E</i> , 2006 , 73, 050902	2.4	44
321	Nonadiabatic molecular dynamics study of electron transfer from alizarin to the hydrated Ti4+ ion. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 17998-8002	3.4	44
320	Solvation dynamics of an excess electron in methanol and water. <i>Journal of Chemical Physics</i> , 1998 , 109, 6390-6395	3.9	43
319	How Toxic Are Ionic Liquid/Acetonitrile Mixtures?. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2499-2	56.34	42
318	Thermal effects in the ultrafast photoinduced electron transfer from a molecular donor anchored to a semiconductor acceptor. <i>Israel Journal of Chemistry</i> , 2002 , 42, 213-224	3.4	42
317	Weak Donor-Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS/TiO Composite: Time-Domain Ab Initio Simulation. <i>Nano Letters</i> , 2017 , 17, 4038-4046	11.5	41
316	Long Carrier Lifetimes in PbI2-Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics. <i>ACS Energy Letters</i> , 2018 , 3, 1868-1874	20.1	41
315	Anharmonicity Extends Carrier Lifetimes in Lead Halide Perovskites at Elevated Temperatures. Journal of Physical Chemistry Letters, 2019 , 10, 6219-6226	6.4	41
314	High-order entropy measures and spin-free quantum entanglement for molecular problems. <i>Molecular Physics</i> , 2007 , 105, 2879-2891	1.7	41
313	Extremely long nonradiative relaxation of photoexcited graphane is greatly accelerated by oxidation: time-domain ab initio study. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3702-10	16.4	40

312	Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation. <i>Dalton Transactions</i> , 2009 , 10069-77	4.3	40
311	Suppression of Electron-Hole Recombination by Intrinsic Defects in 2D Monoelemental Material. Journal of Physical Chemistry Letters, 2019 , 10, 6151-6158	6.4	39
310	Time-domain ab initio modeling of excitation dynamics in quantum dots. <i>Coordination Chemistry Reviews</i> , 2014 , 263-264, 161-181	23.2	39
309	Time-Domain Ab Initio Study of Phonon-Induced Relaxation of Plasmon Excitations in a Silver Quantum Dot. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15034-15040	3.8	39
308	Structural origin of the enhanced electro-optic response of dendrimeric systems. <i>Chemical Physics Letters</i> , 2003 , 373, 207-212	2.5	39
307	Extension of quantized Hamilton dynamics to higher orders. Journal of Chemical Physics, 2002, 116, 870	04 ₃ 8 ₉ 717	2 39
306	Nitrogen-Nitrogen Bonds Undermine Stability of N-Doped Graphene. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11688-94	16.4	38
305	Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 5000-5007	6.4	38
304	Multiple Exciton Generation in Small Si Clusters: A High-Level, Ab Initio Study. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 232-237	6.4	37
303	Assessment of Theoretical Approaches to the Evaluation of Dipole Moments of Chromophores for Nonlinear Optics. <i>Advanced Materials</i> , 2002 , 14, 597	24	37
302	Ultrafast Electron and Hole Relaxation Pathways in Few-Layer MoS2. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20698-20708	3.8	36
301	Non-Radiative ElectronHole Recombination in Silicon Clusters: Ab Initio Non-Adiabatic Molecular Dynamics. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 20702-20709	3.8	36
300	Excited states and optical absorption of small semiconducting clusters: Dopants, defects and charging. <i>Chemical Science</i> , 2011 , 2, 400	9.4	36
299	Sub-Picosecond Auger-Mediated Hole-Trapping Dynamics in Colloidal CdSe/CdS Core/Shell Nanoplatelets. <i>ACS Nano</i> , 2016 , 10, 9370-9378	16.7	35
298	Ab initio study of phonon-induced dephasing of electronic excitations in narrow graphene nanoribbons. <i>Nano Letters</i> , 2008 , 8, 2510-6	11.5	35
297	Distinctive features of the biological catch bond in the jump-ramp force regime predicted by the two-pathway model. <i>Physical Review E</i> , 2005 , 72, 010903	2.4	35
296	Dimensionality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle. <i>Nano Letters</i> , 2014 , 14, 1790-6	11.5	34
295	Temperature dependence of hot-carrier relaxation in PbSe nanocrystals: An ab initio study. <i>Physical Review B</i> , 2009 , 79,	3.3	34

294	Ab Initio Analysis of Auger-Assisted Electron Transfer. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 244	1 -0 2.4	33
293	Photoinduced conductivity of a porphyrin-gold composite nanowire. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 4549-56	2.8	33
292	Perturbed ground state method for electron transfer. <i>Journal of Chemical Physics</i> , 1999 , 111, 7818-782	73.9	33
291	Why Oxygen Increases Carrier Lifetimes but Accelerates Degradation of CHNHPbI under Light Irradiation: Time-Domain Ab Initio Analysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14664-	146 7 3	33
290	Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. <i>Nanoscale</i> , 2021 , 13, 10239-10265	7.7	33
289	Structural Deformation Controls Charge Losses in MAPbI3: Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics. <i>ACS Energy Letters</i> , 2020 , 5, 1930-1938	20.1	32
288	Recent theoretical progress in the development of perovskite photovoltaic materials. <i>Journal of Energy Chemistry</i> , 2018 , 27, 637-649	12	32
287	Accurate Computation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 10073-10080	6.4	32
286	Imidazolium Ionic Liquid Mediates Black Phosphorus Exfoliation while Preventing Phosphorene Decomposition. <i>ACS Nano</i> , 2017 , 11, 6459-6466	16.7	31
285	Photoexcited Nonadiabatic Dynamics of Solvated Push-Pull EConjugated Oligomers with the NEXMD Software. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 3955-3966	6.4	30
284	Second-quantized surface hopping. <i>Physical Review Letters</i> , 2014 , 113, 153003	7.4	30
283	Ionic Vapor: What Does It Consist Of?. Journal of Physical Chemistry Letters, 2012, 3, 1657-62	6.4	30
282	Synthesis and spectral-luminescent characteristics of N-substituted 1,8-naphthalimides. <i>Dyes and Pigments</i> , 2007 , 72, 42-46	4.6	30
281	Electron-nuclear correlations for photo-induced dynamics in molecular dimers. <i>Journal of Chemical Physics</i> , 2004 , 120, 11209-23	3.9	30
280	Irreducible charge density matrices for analysis of many-electron wave functions. <i>International Journal of Quantum Chemistry</i> , 2005 , 102, 582-601	2.1	30
279	Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment. <i>Nano Letters</i> , 2015 , 15, 4274-81	11.5	29
278	Iodine and Sulfur Vacancy Cooperation Promotes Ultrafast Charge Extraction at MAPbI3/MoS2 Interface. <i>ACS Energy Letters</i> , 2020 , 5, 1346-1354	20.1	29
277	CO Photoreduction on Metal Oxide Surface Is Driven by Transient Capture of Hot Electrons: Quantum Dynamics Simulation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3214-3221	16.4	29

276	Exposing the Dynamics and Energetics of the N-Heterocyclic Carbene-Nanocrystal Interface. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14844-14847	16.4	29
275	Photophysical Properties of CdSe/CdS core/shell quantum dots with tunable surface composition. <i>Chemical Physics</i> , 2016 , 471, 24-31	2.3	29
274	Exciton multiplication from first principles. Accounts of Chemical Research, 2013, 46, 1280-9	24.3	28
273	Shape and Temperature Dependence of Hot Carrier Relaxation Dynamics in Spherical and Elongated CdSe Quantum Dots. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11400-11406	3.8	28
272	A quantum-classical bracket that satisfies the Jacobi identity. <i>Journal of Chemical Physics</i> , 2006 , 124, 201104	3.9	28
271	Photoinduced Dynamics of Charge Carriers in Metal Halide Perovskites from an Atomistic Perspective. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 7066-7082	6.4	28
270	C2N-supported single metal ion catalysts for HCOOH dehydrogenation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11105-11112	13	28
269	Ehrenfest and classical path dynamics with decoherence and detailed balance. <i>Journal of Chemical Physics</i> , 2019 , 150, 204124	3.9	27
268	Phonon-Suppressed Auger Scattering of Charge Carriers in Defective Two-Dimensional Transition Metal Dichalcogenides. <i>Nano Letters</i> , 2019 , 19, 6078-6086	11.5	27
267	Time-Domain Ab Initio Study of Nonradiative Decay in a Narrow Graphene Ribbon. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14067-14070	3.8	27
266	Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping. <i>Journal of Chemical Physics</i> , 2016 , 144, 211102	3.9	27
265	Why Silicon Doping Accelerates Electron Polaron Diffusion in Hematite. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20222-20233	16.4	27
264	Effect of Aspect Ratio on Multiparticle Auger Recombination in Single-Walled Carbon Nanotubes: Time Domain Atomistic Simulation. <i>Nano Letters</i> , 2018 , 18, 58-63	11.5	27
263	Buckybomb: Reactive Molecular Dynamics Simulation. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 913	3- 7 .4	26
262	Understanding divergent behaviors in the photocatalytic hydrogen evolution reaction on CdS and ZnS: a DFT based study. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 16862-9	3.6	26
261	Ab initio study of phonon-induced dephasing of plasmon excitations in silver quantum dots. <i>Physical Review B</i> , 2010 , 81,	3.3	26
2 60	Charging Quenches Multiple Exciton Generation in Semiconductor Nanocrystals: First-Principles Calculations on Small PbSe Clusters. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 12617-12621	3.8	26
259	SpinBrbit coupling and luminescence characteristics of conjugated organic molecules. I. Polyacenes. <i>Computational and Theoretical Chemistry</i> , 2002 , 585, 49-59		26

(2003-2020)

258	Atomic Model for Alkali Metal Passivation of Point Defects at Perovskite Grain Boundaries. <i>ACS Energy Letters</i> , 2020 , 5, 3813-3820	20.1	26
257	Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite. <i>Scientific Reports</i> , 2018 , 8, 8115	4.9	26
256	Quantum Dynamics of Photogenerated Charge Carriers in Hybrid Perovskites: Dopants, Grain Boundaries, Electric Order, and Other Realistic Aspects. <i>ACS Energy Letters</i> , 2017 , 2, 1588-1597	20.1	25
255	Tunable Hydrogen Doping of Metal Oxide Semiconductors with Acid-Metal Treatment at Ambient Conditions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4136-4140	16.4	25
254	Laser-Induced Explosion of Nitrated Carbon Nanotubes: Nonadiabatic and Reactive Molecular Dynamics Simulations. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15927-15934	16.4	25
253	Upward Shift in Conduction Band of Ta2O5 Due to Surface Dipoles Induced by N-Doping. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 26925-26936	3.8	25
252	Atomistic Analysis of Room Temperature Quantum Coherence in Two-Dimensional CdSe Nanostructures. <i>Nano Letters</i> , 2017 , 17, 2389-2396	11.5	24
251	Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals. <i>Nano Letters</i> , 2015 , 15, 6875-82	11.5	24
250	Size and Shape Effects on Charge Recombination Dynamics of TiO2 Nanoclusters. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 5201-5208	3.8	24
249	Superatom Molecular Orbital as an Interfacial Charge Separation State. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3485-3490	6.4	24
248	Fast Energy Relaxation by Trap States Decreases Electron Mobility in TiO2 Nanotubes: Time-Domain Ab Initio Analysis. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1642-7	6.4	24
247	Exfoliation of Graphene in Ionic Liquids: Pyridinium versus Pyrrolidinium. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 911-917	3.8	23
246	Coexistence of Different Charge-Transfer Mechanisms in the Hot-Carrier Dynamics of Hybrid Plasmonic Nanomaterials. <i>Nano Letters</i> , 2019 , 19, 3187-3193	11.5	23
245	Mixed quantum-classical equilibrium in global flux surface hopping. <i>Journal of Chemical Physics</i> , 2015 , 142, 224102	3.9	23
244	Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 363201	1.8	23
243	Long-Lived Hot Electron in a Metallic Particle for Plasmonics and Catalysis: Nonadiabatic Molecular Dynamics with Machine Learning. <i>ACS Nano</i> , 2020 , 14, 10608-10615	16.7	23
242	Analysis of multiconfigurational wave functions in terms of hole-particle distributions. <i>Journal of Chemical Physics</i> , 2006 , 124, 224109	3.9	22
241	Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer. <i>Computational and Theoretical Chemistry</i> , 2003 , 630, 33-43		22

240	Water Splitting with a Single-Atom Cu/TiO Photocatalyst: Atomistic Origin of High Efficiency and Proposed Enhancement by Spin Selection. <i>Jacs Au</i> , 2021 , 1, 550-559		22
239	Strain Controls Charge Carrier Lifetimes in Monolayer WSe: Ab Initio Time Domain Analysis. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 7732-7739	6.4	22
238	Phonon-Mediated Interlayer Charge Separation and Recombination in a MoSe/WSe Heterostructure. <i>Nano Letters</i> , 2021 , 21, 2165-2173	11.5	22
237	Strong Influence of Oxygen Vacancy Location on Charge Carrier Losses in Reduced TiO Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2676-2683	6.4	21
236	Communication: Global flux surface hopping in Liouville space. <i>Journal of Chemical Physics</i> , 2015 , 143, 191102	3.9	21
235	The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots. <i>Journal of Chemical Physics</i> , 2012 , 136, 064701	3.9	21
234	Quantized Hamiltonian dynamics captures the low-temperature regime of charge transport in molecular crystals. <i>Journal of Chemical Physics</i> , 2013 , 139, 174109	3.9	21
233	The role of specific solvent modes in the non-radiative relaxation of an excess electron in methanol. <i>Journal of Molecular Structure</i> , 1999 , 485-486, 545-554	3.4	21
232	Elimination of Charge Recombination Centers in Metal Halide Perovskites by Strain. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9982-9990	16.4	21
231	Microwave reduction of graphene oxide rationalized by reactive molecular dynamics. <i>Nanoscale</i> , 2017 , 9, 4024-4033	7.7	20
230	Anti-correlation between Band gap and Carrier Lifetime in Lead Halide Perovskites under Compression Rationalized by Ab Initio Quantum Dynamics. <i>Chemistry of Materials</i> , 2020 , 32, 4707-4715	9.6	20
229	A canonical averaging in the second-order quantized Hamilton dynamics. <i>Journal of Chemical Physics</i> , 2004 , 121, 10967-75	3.9	20
228	Mean-field theory of acentric order of chromophores with displaced dipoles. <i>Chemical Physics Letters</i> , 2001 , 340, 328-335	2.5	20
227	Edge Influence on Charge Carrier Localization and Lifetime in CHNHPbBr Perovskite: Quantum Dynamics Simulation. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 9100-9109	6.4	20
226	Protecting hot carriers by tuning hybrid perovskite structures with alkali cations. <i>Science Advances</i> , 2020 , 6,	14.3	20
225	Boron doping of graphene-pushing the limit. <i>Nanoscale</i> , 2016 , 8, 15521-8	7.7	20
224	Long-lived modulation of plasmonic absorption by ballistic thermal injection. <i>Nature Nanotechnology</i> , 2021 , 16, 47-51	28.7	20
223	Time-Domain ab Initio Modeling of Electron-Phonon Relaxation in High-Temperature Cuprate Superconductors. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 193-198	6.4	19

222	Theoretical Investigation of Relaxation Dynamics in Au38(SH)24 Thiolate-Protected Gold Nanoclusters. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 16380-16388	3.8	19	
221	Allosteric role of the large-scale domain opening in biological catch-binding. <i>Physical Review E</i> , 2009 , 79, 051913	2.4	19	
220	Dissociation of biological catch-bond by periodic perturbation. <i>Biophysical Journal</i> , 2006 , 91, L19-21	2.9	19	
219	Concentric Approximation for Fast and Accurate Numerical Evaluation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 308	2 ⁶ 3 0 89	19	
218	Catalytic Chemistry Predicted by a Charge Polarization Descriptor: Synergistic O Activation and CO Oxidation by Au-Cu Bimetallic Clusters on TiO(101). <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 9629-9640	9.5	18	
217	Fragment Molecular Orbital Nonadiabatic Molecular Dynamics for Condensed Phase Systems. Journal of Physical Chemistry A, 2016 , 120, 7205-12	2.8	18	
216	Dopant Effects on Single and Multiple Excitons in Small Si Clusters: High-Level Ab Initio Calculations. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 10006-10011	3.8	18	
215	Modeling Non-adiabatic Dynamics in Nanoscale and Condensed Matter Systems. <i>Accounts of Chemical Research</i> , 2021 , 54, 4239-4249	24.3	18	
214	Quantum dynamics origin of high photocatalytic activity of mixed-phase anatase/rutile TiO. <i>Journal of Chemical Physics</i> , 2020 , 153, 044706	3.9	18	
213	Modeling Auger Processes with Nonadiabatic Molecular Dynamics. <i>Nano Letters</i> , 2021 , 21, 756-761	11.5	18	
212	Dynamics of Photoexcited Small Polarons in Transition-Metal Oxides. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2191-2198	6.4	18	
211	Influence of Encapsulated Water on Luminescence Energy, Line Width, and Lifetime of Carbon Nanotubes: Time Domain Ab Initio Analysis. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4006-4013	6.4	18	
210	Theoretical Insights into the Impact of Ru Catalyst Anchors on the Efficiency of Photocatalytic CO2 Reduction on Ta2O5. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 7186-97	3.4	17	
209	Electron Solvation in Liquid Ammonia: Lithium, Sodium, Magnesium, and Calcium as Electron Sources. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 2500-6	3.4	17	
208	Ultrafast, asymmetric charge transfer and slow charge recombination in porphyrin/CNT composites demonstrated by time-domain atomistic simulation. <i>Nanoscale</i> , 2018 , 10, 12683-12694	7.7	17	
207	Enhanced Activity of CN-Supported Single Co Atom Catalyst by Single Atom Promoter. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 7009-7014	6.4	17	
206	Control of Carbon Nanotube Electronic Properties by Lithium Cation Intercalation. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4129-33	6.4	17	
205	Phonon-induced pure-dephasing of luminescence, multiple exciton generation, and fission in silicon clusters. <i>Journal of Chemical Physics</i> , 2013 , 139, 164303	3.9	17	

204	Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 2090-100	3.4	17
203	Canonical averaging in the second order quantized Hamilton dynamics by extension of the coherent state thermodynamics of the harmonic oscillator. <i>Journal of Chemical Physics</i> , 2007 , 126, 2041	03 89	17
202	Second-order quantized Hamilton dynamics coupled to classical heat bath. <i>Journal of Chemical Physics</i> , 2005 , 122, 234109	3.9	17
201	Analysis of the Trajectory Surface Hopping Method from the Markov State Model Perspective. <i>Journal of the Physical Society of Japan</i> , 2015 , 84, 094002	1.5	16
200	Atomic fluctuations in electronic materials revealed by dephasing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 11940-11946	11.5	16
199	Exploding Nitromethane in Silico, in Real Time. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3415-20	6.4	16
198	Strong Influence of Ti Adhesion Layer on Electron-Phonon Relaxation in Thin Gold Films: Ab Initio Nonadiabatic Molecular Dynamics. <i>ACS Applied Materials & Dynamics (Materials & Dynamics)</i> 10 (2017) 10 (2017) 11 (2017) 12 (201	9.5	16
197	Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO2 Nanobelt. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5639-5647	3.8	16
196	Quantum interference by non-interacting classical trajectories evolving on a quasi-classical potential. <i>Chemical Physics Letters</i> , 2003 , 378, 533-538	2.5	16
195	Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials. <i>Physical Review E</i> , 2000 , 62, 8324-34	2.4	16
194	Isomerization of all-trans-9- and 13-desmethylretinol by retinal pigment epithelial cells. <i>Biochemistry</i> , 1999 , 38, 13542-50	3.2	16
193	Common Defects Accelerate Charge Carrier Recombination in CsSnI without Creating Mid-Gap States. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8699-8705	6.4	16
192	Synergistic Amination of Graphene: Molecular Dynamics and Thermodynamics. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4397-403	6.4	15
191	Control of Charge Carrier Dynamics in Plasmonic Au Films by TiO Substrate Stoichiometry. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1419-1427	6.4	15
190	Energy Storage in Cubane Derivatives and Their Real-Time Decomposition: Computational Molecular Dynamics and Thermodynamics. <i>ACS Energy Letters</i> , 2016 , 1, 189-194	20.1	15
189	Temperature Dependence of ElectronPhonon Interactions in Gold Films Rationalized by Time-Domain Ab Initio Analysis. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 17488-17497	3.8	15
188	Correlation functions in quantized Hamilton dynamics and quantal cumulant dynamics. <i>Journal of Chemical Physics</i> , 2008 , 129, 144104	3.9	15
187	Molecular dynamics study of aqueous solvation dynamics following OClO photoexcitation. <i>Journal of Chemical Physics</i> , 2003 , 118, 4563-4572	3.9	15

(2016-2003)

Molecular dynamics study of the weakly solvent dependent relaxation dynamics following chlorine dioxide photoexcitation. <i>Journal of Chemical Physics</i> , 2003 , 119, 9111-9120	3.9	15	
Structure and properties of hydrogen bonded complexes of pyridine-N-oxide and its derivatives. Journal of Molecular Structure, 1999 , 510, 69-83	3.4	15	
Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6649-6	6 5 64	15	•
Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks. Journal of Physical Chemistry Letters, 2021 , 12, 6070-6077	6.4	15	
Bidentate Lewis bases are preferred for passivation of MAPbI3 surfaces: A time-domain ab initio analysis. <i>Nano Energy</i> , 2021 , 79, 105491	17.1	15	
Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis. <i>Nanoscale</i> , 2015 , 7, 17055-62	7.7	14	
Ion Association in Aprotic Solvents for Lithium Ion Batteries Requires Discretetontinuum Approach: Lithium Bis(oxalato)borate in Ethylene Carbonate Based Mixtures. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16545-16552	3.8	14	
Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2019 , 10, 7179-7187	6.4	14	
Computationally Efficient Prediction of Ionic Liquid Properties. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1973-7	6.4	14	
Overcoming excitonic bottleneck in organic solar cells: electronic structure and spectra of novel semiconducting donor-acceptor block copolymers. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7630-6	5 ^{3.6}	14	
Molecular structure and electric properties of some pyridine and pyridine-N-oxide derivatives. Journal of Molecular Structure, 1998 , 471, 127-137	3.4	14	
Non-nuclear attractors on SiBi bond in quantum-chemical modeling as basis set inadequacy. <i>Chemical Physics</i> , 2003 , 288, 159-169	2.3	14	
Point Defects in Two-Dimensional Phosphorus Carbide. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 620-626	6.4	14	
Atomistic Mechanism of Passivation of Halide Vacancies in Lead Halide Perovskites by Alkali Ions. <i>Chemistry of Materials</i> , 2021 , 33, 1285-1292	9.6	14	
How Hole Injection Accelerates Both Ion Migration and Nonradiative Recombination in Metal Halide Perovskites <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	14	
Core-dependent properties of copper nanoclusters: valence-pure nanoclusters as NIR TADF emitters and mixed-valence ones as semiconductors. <i>Chemical Science</i> , 2019 , 10, 10122-10128	9.4	13	
MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI/CuSCN Heterojunction. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4481-4489	6.4	13	
Haber Process Made Efficient by Hydroxylated Graphene: Ab Initio Thermochemistry and Reactive Molecular Dynamics. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2622-6	6.4	13	
	dioxide photoexcitation. Journal of Chemical Physics, 2003, 119, 9111-9120 Structure and properties of hydrogen bonded complexes of pyridine-N-oxide and its derivatives. Journal of Molecular Structure, 1999, 510, 69-83 Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. Journal of the American Chemical Society, 2021, 143, 6649-6 Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks. Journal of Physical Chemistry Letters, 2021, 12, 6070-6077 Bidentate Lewis bases are preferred for passivation of MAPbi3 surfaces: A time-domain ab initio analysis. Nano Energy, 2021, 79, 105491 Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis. Nanoscale, 2015, 7, 1705-5-62 Ion Association in Aprotic Solvents for Lithium Ion Batteries Requires DiscreteUontinuum Approach: Lithium Bis(oxalato)borate in Ethylene Carbonate Based Mixtures. Journal of Physical Chemistry C, 2016, 120, 16545-16552 Ion Association on Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2019, 10, 7179-7187 Computationally Efficient Prediction of Ionic Liquid Properties. Journal of Physical Chemistry Letters, 2014, 5, 1973-7 Overcoming excitonic bottleneck in organic solar cells: electronic structure and spectra of novel semiconducting donor-acceptor block copolymers. Physical Chemistry Chemical Physics, 2011, 13, 7630-104, 5, 1973-7 Non-nuclear attractors on Sißi bond in quantum-chemical modeling as basis set inadequacy. Chemical Physics, 2003, 288, 159-169 Point Defects in Two-Dimensional Ephosphorus Carbide. Journal of Physical Chemistry Letters, 2021, 12, 620-626 Atomistic Mechanism of Passivation of Halide Vacancies in Lead Halide Perovskites by Alkali Ions. Chemical Physics, 2003, 288, 159-169 Point Defects in Two-Dimensional Ephosphorus Carbide. Journal of Physical Chemistry Letters, 2021, 11, 1481-1489 MAI Termination Favors Efficient	Structure and properties of hydrogen bonded complexes of pyridine-N-oxide and its derivatives. Journal of Molecular Structure, 1999, 510, 69-83 34 Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. Journal of the American Chemical Society, 2021, 143, 6649-6666 Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks. Journal of Physical Chemistry Letters, 2021, 12, 6070-6077 Bidentate Lewis bases are preferred for passivation of MAPbi3 surfaces: A time-domain ab initio analysis. Nano Energy, 2021, 79, 105491 Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis. Nanoscale, 2015, 7, 17055-62 Ion Association in Aprotic Solvents for Lithium Ion Batteries Requires DiscreteIontinuum Approach: Lithium Bis(oxalato)borate in Ethylene Carbonate Based Mixtures. Journal of Physical Chemistry Letters, 2019, 10, 7179-7187 Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2019, 10, 7179-7187 Computationally Efficient Prediction of Ionic Liquid Properties. Journal of Physical Chemistry Letters, 2019, 10, 7179-7187 Overcoming excitonic bottleneck in organic solar cells: electronic structure and spectra of novel semiconducting donor-acceptor block copolymers. Physical Chemistry Chemical Physics, 2011, 13, 7630-636 Molecular structure and electric properties of some pyridine and pyridine-N-oxide derivatives. Journal of Molecular Structure, 1998, 471, 127-137 Non-nuclear attractors on SiBi bond in quantum-chemical modeling as basis set inadequacy. Chemical Physics, 2003, 288, 159-169 Point Defects in Two-Dimensional Ephosphorus Carbide. Journal of Physical Chemistry Letters, 2021, 12, 620-626 Atomistic Mechanism of Passivation of Halide Vacancies in Lead Halide Perovskites by Alkali Ions. Chemical Physics, 2013, 33, 1285-1292 How Hole Injection Accelerates Both Ion Migration and Nonradiative Recombi	dioxide photoexcitation. Journal of Chemical Physics, 2003, 119, 9111-9120 39 15 Structure and properties of hydrogen bonded complexes of pyridine-N-oxide and its derivatives. Journal of Molecular Structure, 1999, 510, 69-83 34 15 Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. Journal of the American Chemical Society, 2021, 143, 6649-6656 15 Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks. 64 15 Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks. 64 15 Bidentate Lewis bases are preferred for passivation of MAPbi3 surfaces: A time-domain ab initio analysis. Nano Energy, 2021, 79, 105491 17.1 15 Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis. Nanoscale, 2015, 7, 17055-62 Ion Association in Aprotic Solvents for Lithium Ion Batteries Requires Discreteflontinuum Approach: Lithium Bis(oxalato)borate in Ethylene Carbonate Based Mixtures. Journal of Physical Chemistry C, 2016, 120, 16545-16552 Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons. 64 14 Computationally Efficient Prediction of Ionic Liquid Properties. Journal of Physical Chemistry Letters 2019, 10, 7179-7187 Overcoming excitonic bottleneck in organic solar cells: electronic structure and spectra of novel semiconducting donor-acceptor block copolymers. Physical Chemistry Chemical Physics, 2011, 13, 7630-6-36 14 Molecular structure and electric properties of some pyridine and pyridine-N-oxide derivatives. 34 14 Molecular structure and electric properties of some pyridine and pyridine-N-oxide derivatives. 34 14 Molecular structure and electric properties of some pyridine and pyridine-N-oxide derivatives. 34 14 Molecular structure and electric properties of some pyridine and pyridine-N-oxide derivatives. 34 14 Molecular structure and electric properties of some pyridine and pyridine-N-oxide derivatives. 34 14 Mo

168	Infrared Spectral Signatures of Surface-Fluorinated Graphene: A Molecular Dynamics Study. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 246-250	6.4	13
167	Hole-particle characterization of coupled-cluster singles and doubles and related models. <i>Journal of Chemical Physics</i> , 2006 , 125, 154106	3.9	13
166	Approximation of RRKM Falloff Behavior by Interpolation Formulas. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 8633-8637		13
165	Ab initio quantum dynamics of charge carriers in graphitic carbon nitride nanosheets. <i>Journal of Chemical Physics</i> , 2020 , 153, 054701	3.9	13
164	Hot Electron Thermoreflectance Coefficient of Gold during Electron Phonon Nonequilibrium. ACS Photonics, 2018, 5, 4880-4887	6.3	13
163	Numerical tests of coherence-corrected surface hopping methods using a donor-bridge-acceptor model system. <i>Journal of Chemical Physics</i> , 2019 , 150, 194104	3.9	12
162	Time-Domain Ab Initio Simulation of Energy Transfer in Double-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 12088-12094	3.8	12
161	Photoinduced Dynamics in Carbon Nanotube Aggregates Steered by Dark Excitons. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3872-7	6.4	12
160	Polarization versus temperature in pyridinium ionic liquids. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 13940-5	3.4	12
159	Instability of tripositronium. <i>Physical Review A</i> , 2013 , 87,	2.6	12
159 158	Instability of tripositronium. <i>Physical Review A</i> , 2013 , 87, Second-Order Langevin Equation in Quantized Hamilton Dynamics. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 044001	2.6	12
	Second-Order Langevin Equation in Quantized Hamilton Dynamics. <i>Journal of the Physical Society of</i>		
158	Second-Order Langevin Equation in Quantized Hamilton Dynamics. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 044001 Photoinduced vibrational coherence transfer in molecular dimers. <i>Journal of Physical Chemistry A</i> ,	1.5	12
158 157	Second-Order Langevin Equation in Quantized Hamilton Dynamics. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 044001 Photoinduced vibrational coherence transfer in molecular dimers. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 10212-9 A model of phase transitions in the system of electro-optical dipolar chromophores subject to an	1.5 2.8	12
158 157 156	Second-Order Langevin Equation in Quantized Hamilton Dynamics. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 044001 Photoinduced vibrational coherence transfer in molecular dimers. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 10212-9 A model of phase transitions in the system of electro-optical dipolar chromophores subject to an electric field. <i>Journal of Chemical Physics</i> , 2002 , 117, 3354-3360 Electron honon coupling and related transport properties of metals and intermetallic alloys from	2.8 3.9	12 12 12
158 157 156	Second-Order Langevin Equation in Quantized Hamilton Dynamics. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 044001 Photoinduced vibrational coherence transfer in molecular dimers. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 10212-9 A model of phase transitions in the system of electro-optical dipolar chromophores subject to an electric field. <i>Journal of Chemical Physics</i> , 2002 , 117, 3354-3360 Electron phonon coupling and related transport properties of metals and intermetallic alloys from first principles. <i>Materials Today Physics</i> , 2020 , 12, 100175	2.8 3.9	12 12 12
158 157 156 155	Second-Order Langevin Equation in Quantized Hamilton Dynamics. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 044001 Photoinduced vibrational coherence transfer in molecular dimers. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 10212-9 A model of phase transitions in the system of electro-optical dipolar chromophores subject to an electric field. <i>Journal of Chemical Physics</i> , 2002 , 117, 3354-3360 Electronphonon coupling and related transport properties of metals and intermetallic alloys from first principles. <i>Materials Today Physics</i> , 2020 , 12, 100175 Persistent Quantum Coherence and Strong Coupling Enable Fast Electron Transfer across the CdS/TiO2 Interface: A Time-Domain ab Initio Simulation. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 250 First-principles determination of the ultrahigh electrical and thermal conductivity in free-electron	2.8 3.9 8	12 12 12 12 12 12

(2020-2010)

150	Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 4609-14	3.4	11
149	Dissipation of classical energy in nonlinear quantum systems. <i>Journal of Chemical Physics</i> , 2008 , 128, 134107	3.9	11
148	Prezhdo and Brooksby Reply:. <i>Physical Review Letters</i> , 2003 , 90,	7.4	11
147	Efficient passivation of DY center in CH3NH3PbBr3 by chlorine: Quantum molecular dynamics. <i>Nano Research</i> ,1	10	11
146	Net Unidirectional Fluid Transport in Locally Heated Nanochannel by Thermo-osmosis. <i>Nano Letters</i> , 2020 , 20, 8965-8971	11.5	11
145	Ab initio phonon-coupled nonadiabatic relaxation dynamics of [Au25(SH)18] ltlusters. <i>Physica Status Solidi (B): Basic Research</i> , 2016 , 253, 458-462	1.3	11
144	Photoactive Excited States in Explosive Fe(II) Tetrazine Complexes: A Time-Dependent Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 28762-28773	3.8	11
143	Slow Relaxation of Surface Plasmon Excitations in Au55: The Key to Efficient Plasmonic Heating in Au/TiO2. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1563-9	6.4	11
142	Dependence between Structural and Electronic Properties of CsPbI: Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8672-867	8 ^{6.4}	11
141	Real-Time Atomistic Dynamics of Energy Flow in an STM Setup: Revealing the Mechanism of Current-Induced Molecular Emission. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3591-3597	6.4	10
140	Decoherence reduces thermal energy loss in graphene quantum dots. <i>Applied Physics Letters</i> , 2013 , 103, 073111	3.4	10
139	Formulation of quantized Hamiltonian dynamics in terms of natural variables. <i>Journal of Chemical Physics</i> , 2012 , 137, 224115	3.9	10
138	Excited states of positronic lithium and beryllium. <i>Physical Review Letters</i> , 2013 , 111, 193401	7·4	10
137	Distinct Infrared Spectral Signatures of the 1,2- and 1,4-Fluorinated Single-Walled Carbon Nanotubes: A Molecular Dynamics Study. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1307-1311	6.4	10
136	Analytic dynamics of the Morse oscillator derived by semiclassical closures. <i>Journal of Chemical Physics</i> , 2009 , 130, 244111	3.9	10
135	First-Principles Prediction of Two-Dimensional BCP and BCP: Structural Stability, Fundamental Properties, and Renewable Energy Applications. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3436-34	142 ⁴	10
134	Thin Ti adhesion layer breaks bottleneck to hot hole relaxation in Au films. <i>Journal of Chemical Physics</i> , 2019 , 150, 184701	3.9	9
133	Thermal smearing in DFT calculations: How small is really small? A case of La and Lu atoms adsorbed on graphene. <i>Materials Today Communications</i> , 2020 , 25, 101595	2.5	9

132	Electronic Properties of Carbon Nanotubes Intercalated with Li+ and Mg2+: Effects of Ion Charge and Ion Solvation. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 26514-26521	3.8	9
131	Analysis of self-consistent extended Hākel theory (SC-EHT): a new look at the old method. <i>Journal of Mathematical Chemistry</i> , 2015 , 53, 528-550	2.1	9
130	Semiclassical Bohmian Dynamics. Reviews in Computational Chemistry, 2010, 287-368		9
129	Synthesis and scintillating efficiencies of 2,5-diarylthiazoles with intramolecular hydrogen bond. <i>Tetrahedron Letters</i> , 2004 , 45, 5291-5294	2	9
128	Sample shape influence on the antiferroelectric phase transitions in dipolar systems subject to an external field. <i>Physical Review B</i> , 2002 , 65,	3.3	9
127	Strong Modulation of Band Gap, Carrier Mobility and Lifetime in Two-Dimensional Black Phosphorene through Acoustic Phonon Excitation. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3960-	.39 6 7	9
126	Weak Distance Dependence of Hot-Electron-Transfer Rates at the Interface between Monolayer MoS and Gold. <i>ACS Nano</i> , 2021 , 15, 819-828	16.7	9
125	Cooperative enhancement of the nonlinear optical response in conjugated energetic materials: A TD-DFT study. <i>Journal of Chemical Physics</i> , 2017 , 146, 114308	3.9	8
124	Improved description of hematite surfaces by the SCAN functional. <i>Journal of Chemical Physics</i> , 2020 , 152, 024706	3.9	8
123	Universal laws in the force-induced unraveling of biological bonds. <i>Physical Review E</i> , 2007 , 75, 011905	2.4	8
122	Studies on proton acceptor ability of SOx-containing compounds. <i>Journal of Molecular Structure</i> , 1995 , 356, 7-13	3.4	8
121	Ionic Vapor Composition in Pyridinium-Based Ionic Liquids. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 4661-7	3.4	8
120	Chemically Switchable n-Type and p-Type Conduction in Bismuth Selenide Nanoribbons for Thermoelectric Energy Harvesting. <i>ACS Nano</i> , 2021 , 15, 2791-2799	16.7	8
119	Suppressing Oxygen-Induced Deterioration of Metal Halide Perovskites by Alkaline Earth Metal Doping: A Quantum Dynamics Study <i>Journal of the American Chemical Society</i> , 2022 , 144, 5543-5551	16.4	8
118	Analytic Modeling of Field Dependence of Charge Mobility and Applicability of the Concept of the Effective Transport Level to an Organic Dipole Glass. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7776-77	7 8 18	7
117	Are Fluorination and Chlorination of Morpholinium-Based Ionic Liquids Favorable?. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 9920-4	3.4	7
116	Pb dimerization greatly accelerates charge losses in MAPbI: Time-domain ab initio analysis. <i>Journal of Chemical Physics</i> , 2020 , 152, 064707	3.9	7
115	Ab Initio Molecular Dynamics of Dimerization and Clustering in Alkali Metal Vapors. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 4302-6	2.8	7

114	A new model of chemical bonding in ionic melts. <i>Journal of Chemical Physics</i> , 2012 , 136, 164112	3.9	7
113	Regulation of catch binding by allosteric transitions. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 11866-	743.4	7
112	The spin-polarized extended Brueckner orbitals. <i>Journal of Chemical Physics</i> , 2011 , 135, 094107	3.9	7
111	Weyl representation of the permutation operators and exchange interaction. <i>International Journal of Quantum Chemistry</i> , 2004 , 96, 474-482	2.1	7
110	Studies on the proton acceptor ability of phosphoryl compounds. <i>Journal of Molecular Structure</i> , 1996 , 385, 137-144	3.4	7
109	Large-Scale Programmable Synthesis of PbS Quantum Dots. <i>ChemPhysChem</i> , 2016 , 17, 681-6	3.2	7
108	Decoherence Allows Model Reduction in Nonadiabatic Dynamics Simulations. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 8846-53	2.8	6
107	Sharp-tip enhanced catalytic CO oxidation by atomically dispersed Pt1/Pt2 on a raised graphene oxide platform. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12485-12494	13	6
106	Soft Lattice and Defect Covalency Rationalize Tolerance of t Lattice and Defect Covalency Rationalize Tolerance of t Perovskite Solar Cells to Native Defects. <i>Angewandte Chemie</i> , 2020 , 132, 6497-6503	3.6	6
105	Overcoming the Myths of the Review Process and Getting Your Paper Ready for Publication. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 896-9	6.4	6
104	Infrared Spectral Signatures of Multilayered Surface-Fluorinated Graphene: A Molecular Dynamics Study. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 8343-8347	3.8	6
103	Quantized Hamilton dynamics describes quantum discrete breathers in a simple way. <i>Physical Review E</i> , 2011 , 84, 026616	2.4	6
102	Anomalously increased lifetimes of biological complexes at zero force due to the protein-water interface. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 11440-5	3.4	6
101	Solute-solvent interactions determine the effect of external electric field on the intensity of molecular absorption spectra. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 13263-6	2.8	6
100	The Role of Intermolecular Interactions in the Electro-Optical Kerr Effect in Liquid Alkanes. <i>Acta Physica Polonica A</i> , 2005 , 108, 429-447	0.6	6
99	Electric Polarization of Onsager Fluids. I. Dipole Polarization. 3. The Role of Universal Pairwise Interactions. <i>Acta Physica Polonica A</i> , 1995 , 88, 419-434	0.6	6
98	Dependence of electron transfer dynamics on the number of graphene layers in Estacked 2D materials: insights from ab initio nonadiabatic molecular dynamics. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 23198-23208	3.6	6
97	Excited-State Properties of Defected Halide Perovskite Quantum Dots: Insights from Computation. Journal of Physical Chemistry Letters, 2021 , 12, 1005-1011	6.4	6

96	The twist angle has weak influence on charge separation and strong influence on recombination in the MoS2/WS2 bilayer: ab initio quantum dynamics. <i>Journal of Materials Chemistry A</i> ,	13	6
95	CO Adsorbate Promotes Polaron Photoactivity on the Reduced Rutile TiO(110) Surface <i>Jacs Au</i> , 2022 , 2, 234-245		6
94	Two-Dimensional Linear Dichroism Spectroscopy for Identifying Protein Orientation and Secondary Structure Composition. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1031-1037	6.4	5
93	Combining Lindblad Master Equation and Surface Hopping to Evolve Distributions of Quantum Particles. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 4326-4337	3.4	5
92	Pressure-driven opening of carbon nanotubes. <i>Nanoscale</i> , 2016 , 8, 6014-20	7.7	5
91	Selective Excitation of Atomic-Scale Dynamics by Coherent Exciton Motion in the Non-Born-Oppenheimer Regime. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 4260-6	6.4	5
90	Molecular structure and electrical properties of some phosphonates, phosphine-oxides and phosphates. <i>Journal of Molecular Structure</i> , 2009 , 919, 146-153	3.4	5
89	Comparative analysis of electron-phonon relaxation in a semiconducting carbon nanotube and a PbSe quantum dot. <i>Pure and Applied Chemistry</i> , 2008 , 80, 1433-1448	2.1	5
88	Non-adiabatic molecular dynamics with quantum solvent effects. <i>Computational and Theoretical Chemistry</i> , 2003 , 630, 45-58		5
87	Excited State Dynamics in Dual-Defects Modified Graphitic Carbon Nitride <i>Journal of Physical Chemistry Letters</i> , 2022 , 1033-1041	6.4	5
86	Extending Carrier Lifetimes in Lead Halide Perovskites with Alkali Metals by Passivating and Eliminating Halide Interstitial Defects. <i>Angewandte Chemie</i> , 2020 , 132, 4714-4720	3.6	5
85	Why Hybrid Tin-Based Perovskites Simultaneously Improve the Structural Stability and Charge Carriers' Lifetime: Ab Initio Quantum Dynamics. <i>ACS Applied Materials & Dynamics amp; Interfaces</i> , 2021 , 13, 16567	-9 [.] 657.	5 ⁵
84	Ionic Vapor Composition in Critical and Supercritical States of Strongly Interacting Ionic Compounds. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 4302-9	3.4	5
83	Significance of the Chemical Environment of an Element in Nonadiabatic Molecular Dynamics: Feature Selection and Dimensionality Reduction with Machine Learning <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 12026-12032	6.4	5
82	Electron P honon Relaxation at Au/Ti Interfaces Is Robust to Alloying: Ab Initio Nonadiabatic Molecular Dynamics. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 22842-22850	3.8	4
81	Size-Programmed Synthesis of PbSe Quantum Dots via Secondary Phosphine Chalcogenides. <i>Chemistry of Materials</i> , 2019 , 31, 8301-8307	9.6	4
80	Nonadditivity of Temperature Dependent Interactions in Inorganic Ionic Clusters. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 8974-8979	3.8	4
79	DFT study of the infrared and Raman spectra of photochromic Fulgide; 3-Dicyclopropylmethylene-4-E-[1-(2,5-dimethyl-3-furyl)ethylidene]-5-(4-nitrophenylcyanomethylenetetics Structural Chemistry, 2018 , 29, 1085-1094	al:8ydr	- о́µгап-2-

(2007-2013)

78	Ab Initio Study of the Vibrational Signatures for the Covalent Functionalization of Graphene. <i>Journal of Physical Chemistry C</i> , 2013 , 130917155202007	3.8	4
77	Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 5260-7	3.4	4
76	Deformation Model for Thioredoxin Catalysis of Disulfide Bond Dissociation by Force. <i>Cellular and Molecular Bioengineering</i> , 2009 , 2, 255-263	3.9	4
75	Non-adiabatic molecular dynamics simulation of the ultrafast electron transfer from a molecular electron donor to the TiO2 acceptor 2003 ,		4
74	Electrical and Optical Properties of the Nitramine Group and Molecular Structure of Some N-Nitramines. <i>Russian Journal of General Chemistry</i> , 2001 , 71, 907-916	0.7	4
73	Influence of intrinsic defects on the structure and dynamics of the mixed PbBn perovskite: first-principles DFT and NAMD simulations. <i>Journal of Materials Chemistry A</i> , 2021 , 10, 234-244	13	4
72	Electric Polarization of Onsager Fluids. II. Birefringence. 2. Molar Kerr Constants of Binary Solutions. <i>Acta Physica Polonica A</i> , 1994 , 86, 327-332	0.6	4
71	Electric Polarization of Onsager Fluids. II. Birefringence. 3. Role of Universal Pairwise Interactions. <i>Acta Physica Polonica A</i> , 1996 , 89, 47-59	0.6	4
70	Conversion of He(2 S) to He(al) in Liquid Helium. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 6017-60)2 8 .4	4
69	Discovery of a Wurtzite-like CuFeSnSe Semiconductor Nanocrystal Polymorph and Implications for Related CuFeSe Materials. <i>ACS Nano</i> , 2021 ,	16.7	4
68	Charge carrier nonadiabatic dynamics in non-metal doped graphitic carbon nitride <i>Journal of Chemical Physics</i> , 2022 , 156, 094702	3.9	4
67	Nonradiative Relaxation of Charge Carriers in GaN-InN Alloys: Insights from Nonadiabatic Molecular Dynamics. <i>ACS Symposium Series</i> , 2015 , 189-200	0.4	3
66	Influence of tungsten doping on nonradiative electron-hole recombination in monolayer MoSe with Se vacancies. <i>Journal of Chemical Physics</i> , 2020 , 153, 154701	3.9	3
65	Resolving multi-exciton generation by attosecond spectroscopy. <i>Optics Express</i> , 2014 , 22, 26285-93	3.3	3
64	Theory of solar energy materials. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 130301	1.8	3
63	Herman K luk allows analysis of quantum discrete breathers in higher dimensional systems. <i>Molecular Physics</i> , 2012 , 110, 837-844	1.7	3
62	The Influence of the Rigidity of a Carbon Nanotube on the Structure and Dynamics of Confined Methanol. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 064608	1.5	3
61	Chapter 11 Ab initio simulations of photoinduced molecule-semiconductor electron transfer. <i>Theoretical and Computational Chemistry</i> , 2007 , 275-300		3

60	Reply to Comment on A quantum-classical bracket that satisfies the Jacobi identity L. Chem. Phys. 124, 201104 (2006)]. <i>Journal of Chemical Physics</i> , 2007 , 126, 057102	3.9	3
59	Conformational analysis of chloroalkyl derivatives of 1,4-naphthoquinone. <i>Journal of Molecular Structure</i> , 2000 , 522, 71-77	3.4	3
58	Synthesis of 2-chloroalkyl-1,4-naphthoquinones and their reactivity in the formation of autocomplexes. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 1995 , 51, 2465-2	2472	3
57	Dimensionality reduction in machine learning for nonadiabatic molecular dynamics: Effectiveness of elemental sublattices in lead halide perovskites <i>Journal of Chemical Physics</i> , 2022 , 156, 054110	3.9	3
56	Electric Polarization of Onsager Fluids. 1. Dipole Polarization. 2. Binary Solutions of Organic Compounds. <i>Acta Physica Polonica A</i> , 1994 , 85, 509-515	0.6	3
55	Nonadiabatic molecular dynamics analysis of hybrid DionIIacobson 2D leads iodide perovskites. <i>Applied Physics Letters</i> , 2021 , 119, 201102	3.4	3
54	Identifying and Passivating Killer Defects in Pb-Free Double CsAgBiBr Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 10581-10588	6.4	3
53	Band alignment and defects influence the electronphonon heat transport mechanisms across metal interfaces. <i>Applied Physics Letters</i> , 2021 , 118, 163503	3.4	3
52	Tuning charge transfer and recombination in exTTF/CNT nanohybrids by choice of chalcogen: A time-domain density functional analysis. <i>Journal of Applied Physics</i> , 2021 , 129, 025501	2.5	3
51	Chemical passivation of methylammonium fragments eliminates traps, extends charge lifetimes, and restores structural stability of CH3NH3PbI3 perovskite. <i>Nano Research</i> ,1	10	3
50	Weak Anharmonicity Rationalizes the Temperature-Driven Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers <i>ACS Applied Materials & Acs Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers <i>ACS Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers ACS Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers ACS Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers ACS Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers ACS Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers ACS Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers ACS Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers ACS Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers ACCE Applied Materials & Acceleration of Nonradiative Dynamics in CuZnSnS Photoabsorbers in CuZnSnS Photoab</i></i>	9.5	3
49	Ag-Bi Charge Redistribution Creates Deep Traps in Defective CsAgBiBr: Machine Learning Analysis of Density Functional Theory <i>Journal of Physical Chemistry Letters</i> , 2022 , 3645-3651	6.4	3
48	Molecular Photophysics under Shock Compression: Ab Initio Nonadiabatic Molecular Dynamics of Rhodamine Dye. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13600-13607	3.8	2
47	Why Did You Accept My Paper?. Journal of Physical Chemistry Letters, 2014, 5, 2443	6.4	2
46	A simple model for prediction of dipole moments of isolated molecules. <i>Journal of Molecular Structure</i> , 2013 , 1053, 141-149	3.4	2
45	On viscosity of selected normal and associated liquids. <i>Journal of Molecular Liquids</i> , 2013 , 182, 32-38	6	2
44	Accurate and Efficient Quantum Chemistry by Locality of Chemical Interactions. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4317-8	6.4	2
43	Molecular polarizability anisotropy of some five-membered cyclic imides. <i>Journal of Molecular Structure</i> , 2011 , 997, 20-29	3.4	2

42	Nonequilibrium versus equilibrium molecular dynamics studies of solvation dynamics after photoexcitation of OCIO. <i>Journal of Chemical Physics</i> , 2007 , 127, 164510	3.9	2
41	Synthesis, properties, and molecular structure of nitro-substituted N-methyl-N-nitroanilines. <i>Russian Journal of General Chemistry</i> , 2006 , 76, 64-75	0.7	2
40	Molecular structure and electric properties of N -methyl- N -nitroaniline and its derivatives. <i>Journal of Molecular Structure</i> , 2001 , 559, 321-330	3.4	2
39	Application of the electro-optic Kerr effect to investigation of the intermolecular H-bond. <i>Journal of Molecular Structure</i> , 2000 , 526, 115-130	3.4	2
38	Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Inverse Fast Fourier Transform Journal of Physical Chemistry Letters, 2022 , 331-338	6.4	2
37	Electric Polarization of Onsager Fluids. I. Dipole Polarization. 1. Electric Moments of Free Molecules. <i>Acta Physica Polonica A</i> , 1993 , 84, 253-258	0.6	2
36	Electric Polarization of Onsager Fluids. II. Birefringence. 1. Kerr Constants of Pure Substances. <i>Acta Physica Polonica A</i> , 1994 , 85, 797-804	0.6	2
35	Generating Shear Flows without Moving Parts by Thermo-osmosis in Heterogeneous Nanochannels. Journal of Physical Chemistry Letters, 2021 , 12, 10099-10105	6.4	2
34	Ultrafast dynamics of photoinduced processes at surfaces and interfaces 2007, 387-484		2
33	Mixed Metals Slow Down Nonradiative Recombination in Saddle-Shaped Porphyrin Nanorings: A Time-Domain Atomistic Simulation. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 16620-16628	3.8	2
32	The Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848	2.8	1
31	The JPC Periodic Table. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17063-17074	3.8	1
30	The JPC Periodic Table. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4051-4062	6.4	1
29	Analysis of depolarization ratios of ClNO(2) dissolved in methanol. <i>Journal of Chemical Physics</i> , 2014 , 140, 014301	3.9	1
28	Density of normal and associated liquids. Fluid Phase Equilibria, 2013, 342, 23-30	2.5	1
27	Temperature dependence of hot carrier relaxation in PbSe nanocrystals: an ab initio study 2009,		1
26	Lidar determination of altitude profile of the refraction index in electro-optical monitoring of the Earth atmosphere. <i>Measurement: Journal of the International Measurement Confederation</i> , 2005 , 37, 251-259	4.6	1
25	Effect of electronic interactions between double bonds on the conformational flexibility of 1,4-cyclohexadiene. <i>Russian Chemical Bulletin</i> , 1994 , 43, 1587-1588	1.7	1

24	Application of the Electro-Optical Kerr Effect in Physical-Chemical Analysis of Binary Systems. <i>Acta Physica Polonica A</i> , 2002 , 101, 477-494	0.6	1
23	Non-Adiabatic Molecular Dynamics and Quantum Solvent Effects. <i>Progress in Theoretical Chemistry and Physics</i> , 2003 , 339-359	0.6	1
22	The JPCL New Year's Editorial. Journal of Physical Chemistry Letters, 2017, 8, 41	6.4	
21	Perspective Collections in the Limelight. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5239-5239	6.4	
20	Vapor-phase molar Kerr constant values from solution measurements. <i>Journal of Molecular Structure</i> , 2015 , 1079, 258-265	3.4	
19	Triplet Excitons in Small Helium Clusters. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 6113-6122	2.8	
18	Signatures of discrete breathers in coherent state quantum dynamics. <i>Journal of Chemical Physics</i> , 2013 , 138, 054104	3.9	
17	In the Limelight. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3925-3925	6.4	
16	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3718-3719	6.4	
15	In the Limelight: Perspective Collections on Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5688-5688	6.4	
14	Electrostatic View at the Interface. Journal of Physical Chemistry Letters, 2012, 3, 2386-7	6.4	
13	A Modern Quantum Chemistry Sampler: From Algorithms for the Schrodinger Equation, to Medium Effects, to Large-Scale In Silico Molecule Design. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2273-227	, 6.4	
12	Control of Chemical Equilibrium by Solvent: A Basis for Teaching Physical Chemistry of Solutions. Journal of Chemical Education, 2007 , 84, 1348	2.4	
11	Determination of the Equilibrium Composition of the Product Mixture in the Reaction of Oxidizing Ammonolysis of Methane. <i>Chemical Engineering and Technology</i> , 2002 , 25, 71	2	
10	Luminescence characteristics and structure of substituted 4-amino-N-aminonaphthalimids. <i>Computational and Theoretical Chemistry</i> , 2003 , 626, 91-99		
9	Proton Acceptor Ability of the Compounds Containing SO and SO2 Groups. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1994 , 95, 417-418	1	
8	Intermolecular coupling influence on conformations of molecules in solution. <i>Journal of Molecular Structure</i> , 1994 , 318, 243-250	3.4	
7	Influence of intermolecular interactions on the heat of solvation of nonelectrolytes. <i>Theoretical and Experimental Chemistry</i> , 1991 , 27, 66-71	1.3	

LIST OF PUBLICATIONS

6 Excited-State Dynamics in Metal Halide Perovskites: A Theoretical Perspective **2021**, 1-54

5	Photoexcitation Dynamics on the Nanoscale. Springer Series in Chemical Physics, 2007, 5-30	0.3
4	Electro-Optical Kerr Effect Measurements in Conducting Systems. <i>Acta Physica Polonica A</i> , 1999 , 96, 34	1ഏ62
3	JPCL: A Dynamic Journal with a Global Reach. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 113-114	6.4
2	Facile Removal of Bulk Oxygen Vacancy Defects in Metal Oxides Driven by Hydrogen-Dopant Evaporation. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9579-9583	6.4
1	Analytic Model of Nonequilibrium Charge Transport in Disordered Organic Semiconductors with Combined Energy and Off-Diagonal Disorder. <i>Journal of Physical Chemistry C.</i> 2021 , 125, 20230-20240	3.8