
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856804/publications.pdf Version: 2024-02-01

OLEC PREZHOO

#	Article	IF	CITATIONS
1	Trajectory Surface Hopping in the Time-Dependent Kohn-Sham Approach for Electron-Nuclear Dynamics. Physical Review Letters, 2005, 95, 163001.	7.8	611
2	The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems. Journal of Chemical Theory and Computation, 2013, 9, 4959-4972.	5.3	588
3	Theoretical Studies of Photoinduced Electron Transfer in Dye-Sensitized TiO2. Annual Review of Physical Chemistry, 2007, 58, 143-184.	10.8	534
4	Decoherence-induced surface hopping. Journal of Chemical Physics, 2012, 137, 22A545.	3.0	491
5	Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherence Effects, Multiexcitonic States, and Field-Matter Interaction. Journal of Chemical Theory and Computation, 2014, 10, 789-804.	5.3	472
6	Theoretical Insights into Photoinduced Charge Transfer and Catalysis at Oxide Interfaces. Chemical Reviews, 2013, 113, 4496-4565.	47.7	455
7	Unravelling the Effects of Grain Boundary and Chemical Doping on Electron–Hole Recombination in CH ₃ NH ₃ PbI ₃ Perovskite by Time-Domain Atomistic Simulation. Journal of the American Chemical Society, 2016, 138, 3884-3890.	13.7	333
8	Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. Journal of Chemical Physics, 1996, 104, 5942-5955.	3.0	331
9	Mean-field molecular dynamics with surface hopping. Journal of Chemical Physics, 1997, 107, 825-834.	3.0	306
10	Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations. Journal of Chemical Physics, 1997, 107, 5863-5878.	3.0	299
11	Recent Progress in Surface Hopping: 2011–2015. Journal of Physical Chemistry Letters, 2016, 7, 2100-2112.	4.6	279
12	AbInitioNonadiabatic Molecular Dynamics of the Ultrafast Electron Injection across the Alizarinâ^'TiO2Interface. Journal of the American Chemical Society, 2005, 127, 7941-7951.	13.7	261
13	Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device. Nano Letters, 2010, 10, 3237-3242.	9.1	247
14	Breaking the Phonon Bottleneck in PbSe and CdSe Quantum Dots: Time-Domain Density Functional Theory of Charge Carrier Relaxation. ACS Nano, 2009, 3, 93-99.	14.6	236
15	Ultrafast Carrier Thermalization and Cooling Dynamics in Few-Layer MoS ₂ . ACS Nano, 2014, 8, 10931-10940.	14.6	236
16	Quantum Zeno Effect Rationalizes the Phonon Bottleneck in Semiconductor Quantum Dots. Physical Review Letters, 2013, 110, 180404.	7.8	230
17	Photo-induced Charge Separation across the Graphene–TiO ₂ Interface Is Faster than Energy Losses: A Time-Domain <i>ab Initio</i> Analysis. Journal of the American Chemical Society, 2012, 134, 14238-14248.	13.7	226
18	Quantum Coherence Facilitates Efficient Charge Separation at a MoS ₂ /MoSe ₂ van der Waals Junction. Nano Letters, 2016, 16, 1996-2003.	9.1	225

#	Article	IF	CITATIONS
19	Instantaneous Generation of Charge-Separated State on TiO ₂ Surface Sensitized with Plasmonic Nanoparticles. Journal of the American Chemical Society, 2014, 136, 4343-4354.	13.7	221
20	Time-Domainab InitioStudy of Charge Relaxation and Recombination in Dye-Sensitized TiO2. Journal of the American Chemical Society, 2007, 129, 8528-8543.	13.7	207
21	Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface. Nano Letters, 2017, 17, 6435-6442.	9.1	204
22	Colloidal Semiconductor Quantum Dots with Tunable Surface Composition. Nano Letters, 2012, 12, 4465-4471.	9.1	201
23	Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters, 2008, 458, 113-116.	2.6	199
24	Auger-Assisted Electron Transfer from Photoexcited Semiconductor Quantum Dots. Nano Letters, 2014, 14, 1263-1269.	9.1	197
25	Relationship between Quantum Decoherence Times and Solvation Dynamics in Condensed Phase Chemical Systems. Physical Review Letters, 1998, 81, 5294-5297.	7.8	193
26	Electronic Structure and Spectra of Catechol and Alizarin in the Gas Phase and Attached to Titanium. Journal of Physical Chemistry B, 2005, 109, 365-373.	2.6	188
27	Mixing quantum and classical mechanics. Physical Review A, 1997, 56, 162-175.	2.5	187
28	The Two-Pathway Model for the Catch-Slip Transition in Biological Adhesion. Biophysical Journal, 2005, 89, 1446-1454.	0.5	186
29	Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field. Chemical Reviews, 2015, 115, 5797-5890.	47.7	182
30	Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Science Advances, 2020, 6, eaaw7453.	10.3	182
31	Nonadiabatic Molecular Dynamics Simulation of Light-Induced Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor Acceptorâ€. Journal of Physical Chemistry B, 2002, 106, 8047-8054.	2.6	180
32	Regarding the validity of the time-dependent Kohn–Sham approach for electron-nuclear dynamics via trajectory surface hopping. Journal of Chemical Physics, 2011, 134, 024102.	3.0	178
33	Photoinduced electron dynamics at the chromophore–semiconductor interface: A time-domain ab initio perspective. Progress in Surface Science, 2009, 84, 30-68.	8.3	168
34	Persistent Electronic Coherence Despite Rapid Loss of Electron–Nuclear Correlation. Journal of Physical Chemistry Letters, 2013, 4, 3857-3864.	4.6	165
35	Mean field approximation for the stochastic Schrödinger equation. Journal of Chemical Physics, 1999, 111, 8366-8377.	3.0	158
36	Hole Trapping by Iodine Interstitial Defects Decreases Free Carrier Losses in Perovskite Solar Cells: A Time-Domain <i>Ab Initio</i> Study. ACS Energy Letters, 2017, 2, 1270-1278.	17.4	151

#	Article	IF	CITATIONS
37	A Simple Solution to the Trivial Crossing Problem in Surface Hopping. Journal of Physical Chemistry Letters, 2014, 5, 713-719.	4.6	148
38	Soft Lattice and Defect Covalency Rationalize Tolerance of β sPbl ₃ Perovskite Solar Cells to Native Defects. Angewandte Chemie - International Edition, 2020, 59, 6435-6441.	13.8	147
39	Quantum Backreaction through the Bohmian Particle. Physical Review Letters, 2001, 86, 3215-3219.	7.8	146
40	Nonadiabatic Dynamics of Charge Transfer and Singlet Fission at the Pentacene/C ₆₀ Interface. Journal of the American Chemical Society, 2014, 136, 1599-1608.	13.7	142
41	Scanning Tunneling Microscopy of DNA-Wrapped Carbon Nanotubes. Nano Letters, 2009, 9, 12-17.	9.1	140
42	Moderate Humidity Delays Electron–Hole Recombination in Hybrid Organic–Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments. Journal of Physical Chemistry Letters, 2016, 7, 3215-3222.	4.6	139
43	Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 7719-7727.	2.6	136
44	Sulfur Adatom and Vacancy Accelerate Charge Recombination in MoS ₂ but by Different Mechanisms: Time-Domain Ab Initio Analysis. Nano Letters, 2017, 17, 7962-7967.	9.1	136
45	Maximizing Singlet Fission by Intermolecular Packing. Journal of Physical Chemistry Letters, 2014, 5, 3345-3353.	4.6	135
46	Donor–Acceptor Interaction Determines the Mechanism of Photoinduced Electron Injection from Graphene Quantum Dots into TiO ₂ : π-Stacking Supersedes Covalent Bonding. Journal of the American Chemical Society, 2017, 139, 2619-2629.	13.7	132
47	Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: <i>Ab Initio</i> Non-adiabatic Molecular Dynamics. Journal of the American Chemical Society, 2017, 139, 6707-6717.	13.7	132
48	Control of Charge Recombination in Perovskites by Oxidation State of Halide Vacancy. Journal of the American Chemical Society, 2018, 140, 15753-15763.	13.7	129
49	Surface Ligands Increase Photoexcitation Relaxation Rates in CdSe Quantum Dots. ACS Nano, 2012, 6, 6515-6524.	14.6	128
50	Charge Separation and Recombination in Two-Dimensional MoS ₂ /WS ₂ : Time-Domain ab Initio Modeling. Chemistry of Materials, 2017, 29, 2466-2473.	6.7	127
51	Nonradiative Quenching of Fluorescence in a Semiconducting Carbon Nanotube: A Time-Domain <i>AbÂlnitio</i> Study. Physical Review Letters, 2008, 100, 197402.	7.8	126
52	Ultrafast Dynamics of Photongenerated Holes at a CH ₃ OH/TiO ₂ Rutile Interface. Journal of the American Chemical Society, 2016, 138, 13740-13749.	13.7	126
53	Global Flux Surface Hopping Approach for Mixed Quantum-Classical Dynamics. Journal of Chemical Theory and Computation, 2014, 10, 3598-3605.	5.3	125
54	Photoinduced Dynamics in Semiconductor Quantum Dots: Insights from Time-Domain <i>ab Initio</i> Studies. Accounts of Chemical Research, 2009, 42, 2005-2016.	15.6	124

#	Article	IF	CITATIONS
55	Dynamics of the Photoexcited Electron at the Chromophore–Semiconductor Interface. Accounts of Chemical Research, 2008, 41, 339-348.	15.6	123
56	Time-Domain Ab Initio Modeling of Photoinduced Dynamics at Nanoscale Interfaces. Annual Review of Physical Chemistry, 2015, 66, 549-579.	10.8	121
57	Guestâ	3.1	120
58	Ab Initio Nonadiabatic Molecular Dynamics of the Ultrafast Electron Injection from a PbSe Quantum Dot into the TiO ₂ Surface. Journal of the American Chemical Society, 2011, 133, 19240-19249.	13.7	120
59	Phonon-Induced Dephasing of Excitons in Semiconductor Quantum Dots: Multiple Exciton Generation, Fission, and Luminescence. ACS Nano, 2009, 3, 2487-2494.	14.6	115
60	Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. Nano Letters, 2018, 18, 2459-2466.	9.1	114
61	Spin–Orbit Interactions Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 2159-2166.	17.4	114
62	Quantum Anti-Zeno Acceleration of a Chemical Reaction. Physical Review Letters, 2000, 85, 4413-4417.	7.8	112
63	Ab Initio Time-Domain Study of Phonon-Assisted Relaxation of Charge Carriers in a PbSe Quantum Dot. Journal of Physical Chemistry C, 2007, 111, 4871-4878.	3.1	108
64	Water Boiling Inside Carbon Nanotubes: Toward Efficient Drug Release. ACS Nano, 2011, 5, 5647-5655.	14.6	108
65	Dopants Control Electron–Hole Recombination at Perovskite–TiO ₂ Interfaces: <i>Ab Initio</i> Time-Domain Study. ACS Nano, 2015, 9, 11143-11155.	14.6	108
66	Quantized Hamilton dynamics. Journal of Chemical Physics, 2000, 113, 6557-6565.	3.0	107
67	Nonadiabatic Dynamics of Positive Charge during Photocatalytic Water Splitting on GaN(10-10) Surface: Charge Localization Governs Splitting Efficiency. Journal of the American Chemical Society, 2013, 135, 8682-8691.	13.7	107
68	What Makes the Photocatalytic CO ₂ Reduction on N-Doped Ta ₂ O ₅ Efficient: Insights from Nonadiabatic Molecular Dynamics. Journal of the American Chemical Society, 2015, 137, 11517-11525.	13.7	105
69	Ionic and Molecular Liquids: Working Together for Robust Engineering. Journal of Physical Chemistry Letters, 2013, 4, 1423-1431.	4.6	103
70	Chlorine Doping Reduces Electron–Hole Recombination in Lead Iodide Perovskites: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2015, 6, 4463-4469.	4.6	103
71	Halide Composition Controls Electron–Hole Recombination in Cesium–Lead Halide Perovskite Quantum Dots: A Time Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2018, 9, 1872-1879.	4.6	103
72	Superoxide/Peroxide Chemistry Extends Charge Carriers' Lifetime but Undermines Chemical Stability of CH ₃ NH ₃ PbI ₃ Exposed to Oxygen: Time-Domain <i>ab Initio</i> Analysis. Journal of the American Chemical Society, 2019, 141, 5798-5807.	13.7	102

#	Article	IF	CITATIONS
73	Ab Initio Nonadiabatic Molecular Dynamics of Wet-Electrons on the TiO ₂ Surface. Journal of the American Chemical Society, 2009, 131, 15483-15491.	13.7	99
74	Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder. Journal of the American Chemical Society, 2019, 141, 15557-15566.	13.7	98
75	Quantized Hamilton Dynamics. Theoretical Chemistry Accounts, 2006, 116, 206-218.	1.4	96
76	Ab Initio Study of Vibrational Dephasing of Electronic Excitations in Semiconducting Carbon Nanotubes. Nano Letters, 2007, 7, 3260-3265.	9.1	96
77	Temperature Independence of the Photoinduced Electron Injection in Dye-Sensitized TiO ₂ Rationalized by Ab Initio Time-Domain Density Functional Theory. Journal of the American Chemical Society, 2008, 130, 9756-9762.	13.7	96
78	Time-DomainAbÂlnitioSimulation of Electron and Hole Relaxation Dynamics in a Single-Wall Semiconducting Carbon Nanotube. Physical Review Letters, 2006, 96, 187401.	7.8	95
79	Why Chemical Vapor Deposition Grown MoS ₂ Samples Outperform Physical Vapor Deposition Samples: Time-Domain ab Initio Analysis. Nano Letters, 2018, 18, 4008-4014.	9.1	94
80	Thermally Assisted Sub-10 fs Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Advanced Materials, 2004, 16, 240-244.	21.0	93
81	Generation of Multiple Excitons in PbSe and CdSe Quantum Dots by Direct Photoexcitation: First-Principles Calculations on Small PbSe and CdSe Clusters. Journal of Physical Chemistry C, 2008, 112, 18291-18294.	3.1	93
82	Time-Domain ab Initio Study of Auger and Phonon-Assisted Auger Processes in a Semiconductor Quantum Dot. Nano Letters, 2011, 11, 1845-1850.	9.1	93
83	Nonadiabatic Molecular Dynamics for Thousand Atom Systems: A Tight-Binding Approach toward PYXAID. Journal of Chemical Theory and Computation, 2016, 12, 1436-1448.	5.3	93
84	Multiple excitons and the electron–phonon bottleneck in semiconductor quantum dots: An ab initio perspective. Chemical Physics Letters, 2008, 460, 1-9.	2.6	92
85	Isomerization of all-trans-Retinol to cis-Retinols in Bovine Retinal Pigment Epithelial Cells: Dependence on the Specificity of Retinoid-Binding Proteins. Biochemistry, 2000, 39, 11370-11380.	2.5	91
86	Multiple Exciton Generation and Recombination Dynamics in Small Si and CdSe Quantum Dots: An Ab Initio Time-Domain Study. ACS Nano, 2012, 6, 1239-1250.	14.6	91
87	Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites. Journal of the American Chemical Society, 2020, 142, 3060-3068.	13.7	91
88	Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2013, 4, 1-6.	4.6	90
89	Lewis Base Passivation of Hybrid Halide Perovskites Slows Electron–Hole Recombination: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2018, 9, 1164-1171.	4.6	90
90	Ab Initio Study of Temperature and Pressure Dependence of Energy and Phonon-Induced Dephasing of Electronic Excitations in CdSe and PbSe Quantum Dots. Journal of Physical Chemistry C, 2008, 112, 7800-7808.	3.1	89

#	Article	IF	CITATIONS
91	Ultrafast Vibrationally-Induced Dephasing of Electronic Excitations in PbSe Quantum Dots. Nano Letters, 2006, 6, 2295-2300.	9.1	88
92	Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics. Journal of Chemical Physics, 2014, 140, 194107.	3.0	86
93	Delocalized Impurity Phonon Induced Electron–Hole Recombination in Doped Semiconductors. Nano Letters, 2018, 18, 1592-1599.	9.1	86
94	Mixed quantum-classical dynamics for charge transport in organics. Physical Chemistry Chemical Physics, 2015, 17, 12395-12406.	2.8	85
95	Solvent Mode Participation in the Nonradiative Relaxation of the Hydrated Electron. The Journal of Physical Chemistry, 1996, 100, 17094-17102.	2.9	83
96	Theoretical Aspects of the Biological Catch Bond. Accounts of Chemical Research, 2009, 42, 693-703.	15.6	82
97	Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces. Physical Review B, 2018, 97, .	3.2	81
98	Extending Carrier Lifetimes in Lead Halide Perovskites with Alkali Metals by Passivating and Eliminating Halide Interstitial Defects. Angewandte Chemie - International Edition, 2020, 59, 4684-4690.	13.8	78
99	Aromaticity indices revisited: refinement and application to certain five-membered ring heterocycles. Tetrahedron, 2001, 57, 5715-5729.	1.9	77
100	Mono-Elemental Properties of 2D Black Phosphorus Ensure Extended Charge Carrier Lifetimes under Oxidation: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 1083-1091.	4.6	74
101	Nonadiabatic charge dynamics in novel solar cell materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1305.	14.6	71
102	Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2017, 8, 4129-4139.	4.6	71
103	Plasmon-Mediated Electron Injection from Au Nanorods into MoS2: Traditional versus Photoexcitation Mechanism. CheM, 2018, 4, 1112-1127.	11.7	71
104	Heat-Driven Release of a Drug Molecule from Carbon Nanotubes: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114, 13481-13486.	2.6	70
105	Interplay between Localized and Free Charge Carriers Can Explain Hot Fluorescence in the CH3NH3PbBr3 Perovskite: Time-Domain Ab Initio Analysis. Journal of the American Chemical Society, 2017, 139, 17327-17333.	13.7	70
106	<i>Ab initio</i> nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale, 2021, 13, 10239-10265.	5.6	70
107	Strong Interaction at the Perovskite/TiO ₂ Interface Facilitates Ultrafast Photoinduced Charge Separation: A Nonadiabatic Molecular Dynamics Study. Journal of Physical Chemistry C, 2017, 121, 3797-3806.	3.1	69
108	Role of Methylammonium Orientation in Ion Diffusion and Current–Voltage Hysteresis in the CH ₃ NH ₃ PbI ₃ Perovskite. ACS Energy Letters, 2017, 2, 1997-2004.	17.4	68

#	Article	IF	CITATIONS
109	Time-Domain ab Initio Analysis Rationalizes the Unusual Temperature Dependence of Charge Carrier Relaxation in Lead Halide Perovskite. ACS Energy Letters, 2018, 3, 2713-2720.	17.4	68
110	Increased Lattice Stiffness Suppresses Nonradiative Charge Recombination in MAPbl ₃ Doped with Larger Cations: Time-Domain Ab Initio Analysis. ACS Energy Letters, 2018, 3, 2070-2076.	17.4	68
111	Ab initio study of exciton transfer dynamics from a core–shell semiconductor quantum dot to a porphyrin-sensitizer. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 342-351.	3.9	67
112	Asymmetry in the Electron and Hole Transfer at a Polymer–Carbon Nanotube Heterojunction. Nano Letters, 2014, 14, 3335-3341.	9.1	67
113	Understanding Hematite Doping with Group IV Elements: A DFT+ <i>U</i> Study. Journal of Physical Chemistry C, 2015, 119, 26303-26310.	3.1	66
114	Anharmonicity Extends Carrier Lifetimes in Lead Halide Perovskites at Elevated Temperatures. Journal of Physical Chemistry Letters, 2019, 10, 6219-6226.	4.6	66
115	Influence of Defects on Excited-State Dynamics in Lead Halide Perovskites: Time-Domain ab Initio Studies. Journal of Physical Chemistry Letters, 2019, 10, 3788-3804.	4.6	66
116	Ab Initio Time-Domain Study of the Triplet State in a Semiconducting Carbon Nanotube: Intersystem Crossing, Phosphorescence Time, and Line Width. Journal of the American Chemical Society, 2012, 134, 15648-15651.	13.7	65
117	Nanoscale Carbon Greatly Enhances Mobility of a Highly Viscous Ionic Liquid. ACS Nano, 2014, 8, 8190-8197.	14.6	65
118	Symmetry Breaking at MAPbl ₃ Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 1617-1623.	4.6	65
119	Accurate Computation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. Journal of Physical Chemistry Letters, 2020, 11, 10073-10080.	4.6	65
120	Tunable Hydrogen Doping of Metal Oxide Semiconductors with Acid–Metal Treatment at Ambient Conditions. Journal of the American Chemical Society, 2020, 142, 4136-4140.	13.7	65
121	Why Oxygen Increases Carrier Lifetimes but Accelerates Degradation of CH ₃ NH ₃ PbI ₃ under Light Irradiation: Time-Domain Ab Initio Analysis. Journal of the American Chemical Society, 2020, 142, 14664-14673.	13.7	64
122	Minimizing Electron–Hole Recombination on TiO ₂ Sensitized with PbSe Quantum Dots: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2014, 5, 2941-2946.	4.6	63
123	CO ₂ Photoreduction on Metal Oxide Surface Is Driven by Transient Capture of Hot Electrons: <i>Ab Initio</i> Quantum Dynamics Simulation. Journal of the American Chemical Society, 2020, 142, 3214-3221.	13.7	63
124	Suppression of Electron–Hole Recombination by Intrinsic Defects in 2D Monoelemental Material. Journal of Physical Chemistry Letters, 2019, 10, 6151-6158.	4.6	62
125	Uniform Diffusion of Acetonitrile inside Carbon Nanotubes Favors Supercapacitor Performance. Nano Letters, 2008, 8, 2126-2130.	9.1	61
126	Defects Are Needed for Fast Photo-Induced Electron Transfer from a Nanocrystal to a Molecule: Time-Domain <i>Ab Initio</i> Analysis. Journal of the American Chemical Society, 2013, 135, 18892-18900.	13.7	61

#	Article	IF	CITATIONS
127	Theoretical Study of Electron–Phonon Relaxation in PbSe and CdSe Quantum Dots: Evidence for Phonon Memory. Journal of Physical Chemistry C, 2011, 115, 21641-21651.	3.1	60
128	Fewest Switches Surface Hopping in Liouville Space. Journal of Physical Chemistry Letters, 2015, 6, 3827-3833.	4.6	60
129	Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007.	4.6	60
130	Confinement by Carbon Nanotubes Drastically Alters the Boiling and Critical Behavior of Water Droplets. ACS Nano, 2012, 6, 2766-2773.	14.6	59
131	Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots. ACS Nano, 2015, 9, 9106-9116.	14.6	59
132	Microscopic Structure and Dynamics of LiBF ₄ Solutions in Cyclic and Linear Carbonates. Journal of Physical Chemistry B, 2011, 115, 14563-14571.	2.6	58
133	Nonadiabatic Ensemble Simulations of <i>cis-</i> Stilbene and <i>cis</i> -Azobenzene Photoisomerization. Journal of Chemical Theory and Computation, 2014, 10, 14-23.	5.3	58
134	Water Splitting with a Single-Atom Cu/TiO ₂ Photocatalyst: Atomistic Origin of High Efficiency and Proposed Enhancement by Spin Selection. Jacs Au, 2021, 1, 550-559.	7.9	58
135	A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. Physical Chemistry Chemical Physics, 2011, 13, 19345.	2.8	57
136	Auger-Mediated Electron Relaxation Is Robust to Deep Hole Traps: Time-Domain Ab Initio Study of CdSe Quantum Dots. Nano Letters, 2015, 15, 2086-2091.	9.1	57
137	Quantized Hamilton dynamics for a general potential. Journal of Chemical Physics, 2002, 116, 4450-4461.	3.0	56
138	Structural Deformation Controls Charge Losses in MAPbI ₃ : Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics. ACS Energy Letters, 2020, 5, 1930-1938.	17.4	55
139	Classical mapping for second-order quantized Hamiltonian dynamics. Journal of Chemical Physics, 2002, 117, 2995-3002.	3.0	54
140	Long Carrier Lifetimes in Pbl ₂ -Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics. ACS Energy Letters, 2018, 3, 1868-1874.	17.4	54
141	Protecting hot carriers by tuning hybrid perovskite structures with alkali cations. Science Advances, 2020, 6, .	10.3	54
142	Iodine and Sulfur Vacancy Cooperation Promotes Ultrafast Charge Extraction at MAPbl ₃ /MoS ₂ Interface. ACS Energy Letters, 2020, 5, 1346-1354.	17.4	53
143	DFT Simulation and Vibrational Analysis of the IR and Raman Spectra of a CdSe Quantum Dot Capped by Methylamine and Trimethylphosphine Oxide Ligands. Journal of Physical Chemistry C, 2012, 116, 14674-14681.	3.1	52
144	Ferroelectric Alignment of Organic Cations Inhibits Nonradiative Electron–Hole Recombination in Hybrid Perovskites: Ab Initio Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 812-818.	4.6	52

#	Article	IF	CITATIONS
145	Elimination of Charge Recombination Centers in Metal Halide Perovskites by Strain. Journal of the American Chemical Society, 2021, 143, 9982-9990.	13.7	52
146	Quantized mean-field approximation. Chemical Physics Letters, 2001, 346, 463-469.	2.6	50
147	Macroscopic Order and Electro-Optic Response of Dipolar Chromophore-Polymer Materials. ChemPhysChem, 2004, 5, 1821-1830.	2.1	50
148	Force-induced deformations and stability of biological bonds. Physical Review E, 2006, 73, 050902.	2.1	50
149	Virtual Issue: Graphene and Functionalized Graphene. Journal of Physical Chemistry C, 2011, 115, 3195-3197.	3.1	50
150	Nitrogen–Nitrogen Bonds Undermine Stability of N-Doped Graphene. Journal of the American Chemical Society, 2015, 137, 11688-11694.	13.7	49
151	Nonadiabatic Molecular Dynamics Study of Electron Transfer from Alizarin to the Hydrated Ti4+ Ion. Journal of Physical Chemistry B, 2005, 109, 17998-18002.	2.6	48
152	Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of Energy Chemistry, 2018, 27, 637-649.	12.9	48
153	Advancing Physical Chemistry with Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 9656-9658.	4.6	48
154	Ultrafast Electron and Hole Relaxation Pathways in Few-Layer MoS ₂ . Journal of Physical Chemistry C, 2015, 119, 20698-20708.	3.1	47
155	Atomic Model for Alkali Metal Passivation of Point Defects at Perovskite Grain Boundaries. ACS Energy Letters, 2020, 5, 3813-3820.	17.4	47
156	Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation. Dalton Transactions, 2009, , 10069.	3.3	46
157	Time-Domain Ab Initio Study of Phonon-Induced Relaxation of Plasmon Excitations in a Silver Quantum Dot. Journal of Physical Chemistry C, 2012, 116, 15034-15040.	3.1	46
158	Long-Lived Hot Electron in a Metallic Particle for Plasmonics and Catalysis: <i>Ab Initio</i> Nonadiabatic Molecular Dynamics with Machine Learning. ACS Nano, 2020, 14, 10608-10615.	14.6	46
159	Phonon-Mediated Interlayer Charge Separation and Recombination in a MoSe ₂ /WSe ₂ Heterostructure. Nano Letters, 2021, 21, 2165-2173.	9.1	46
160	Modeling Non-adiabatic Dynamics in Nanoscale and Condensed Matter Systems. Accounts of Chemical Research, 2021, 54, 4239-4249.	15.6	46
161	Solvation dynamics of an excess electron in methanol and water. Journal of Chemical Physics, 1998, 109, 6390-6395.	3.0	45
162	Thermal effects in the ultrafast photoinduced electron transfer from a molecular donor anchored to a semiconductor acceptor. Israel Journal of Chemistry, 2002, 42, 213-224.	2.3	45

#	Article	IF	CITATIONS
163	How Toxic Are Ionic Liquid/Acetonitrile Mixtures?. Journal of Physical Chemistry Letters, 2011, 2, 2499-2503.	4.6	45
164	Extremely Long Nonradiative Relaxation of Photoexcited Graphane Is Greatly Accelerated by Oxidation: Time-Domain Ab Initio Study. Journal of the American Chemical Society, 2013, 135, 3702-3710.	13.7	45
165	Weak Donor–Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS ₂ /TiO ₂ Composite: Time-Domain Ab Initio Simulation. Nano Letters, 2017, 17, 4038-4046.	9.1	45
166	Structural origin of the enhanced electro-optic response of dendrimeric systems. Chemical Physics Letters, 2003, 373, 207-212.	2.6	43
167	High-order entropy measures and spin-free quantum entanglement for molecular problems. Molecular Physics, 2007, 105, 2879-2891.	1.7	43
168	Sub-Picosecond Auger-Mediated Hole-Trapping Dynamics in Colloidal CdSe/CdS Core/Shell Nanoplatelets. ACS Nano, 2016, 10, 9370-9378.	14.6	43
169	Imidazolium Ionic Liquid Mediates Black Phosphorus Exfoliation while Preventing Phosphorene Decomposition. ACS Nano, 2017, 11, 6459-6466.	14.6	43
170	Phonon-Suppressed Auger Scattering of Charge Carriers in Defective Two-Dimensional Transition Metal Dichalcogenides. Nano Letters, 2019, 19, 6078-6086.	9.1	43
171	Ab Initio Study of Phonon-Induced Dephasing of Electronic Excitations in Narrow Graphene Nanoribbons. Nano Letters, 2008, 8, 2510-2516.	9.1	42
172	Core-dependent properties of copper nanoclusters: valence-pure nanoclusters as NIR TADF emitters and mixed-valence ones as semiconductors. Chemical Science, 2019, 10, 10122-10128.	7.4	42
173	Why Silicon Doping Accelerates Electron Polaron Diffusion in Hematite. Journal of the American Chemical Society, 2019, 141, 20222-20233.	13.7	42
174	Time-domain ab initio modeling of excitation dynamics in quantum dots. Coordination Chemistry Reviews, 2014, 263-264, 161-181.	18.8	41
175	Non-Radiative Electron–Hole Recombination in Silicon Clusters: Ab Initio Non-Adiabatic Molecular Dynamics. Journal of Physical Chemistry C, 2014, 118, 20702-20709.	3.1	41
176	Photoinduced Dynamics of Charge Carriers in Metal Halide Perovskites from an Atomistic Perspective. Journal of Physical Chemistry Letters, 2020, 11, 7066-7082.	4.6	41
177	Dynamics of Photoexcited Small Polarons in Transition-Metal Oxides. Journal of Physical Chemistry Letters, 2021, 12, 2191-2198.	4.6	41
178	Concentric Approximation for Fast and Accurate Numerical Evaluation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. Journal of Physical Chemistry Letters, 2021, 12, 3082-3089.	4.6	41
179	Extension of quantized Hamilton dynamics to higher orders. Journal of Chemical Physics, 2002, 116, 8704-8712.	3.0	40
180	Photophysical Properties of CdSe/CdS core/shell quantum dots with tunable surface composition. Chemical Physics, 2016, 471, 24-31.	1.9	40

11

#	Article	IF	CITATIONS
181	C ₂ N-supported single metal ion catalysts for HCOOH dehydrogenation. Journal of Materials Chemistry A, 2018, 6, 11105-11112.	10.3	40
182	Ehrenfest and classical path dynamics with decoherence and detailed balance. Journal of Chemical Physics, 2019, 150, 204124.	3.0	40
183	Long-lived modulation of plasmonic absorption by ballistic thermal injection. Nature Nanotechnology, 2021, 16, 47-51.	31.5	40
184	Assessment of Theoretical Approaches to the Evaluation of Dipole Moments of Chromophores for Nonlinear Optics. Advanced Materials, 2002, 14, 597.	21.0	39
185	Irreducible charge density matrices for analysis of many-electron wave functions. International Journal of Quantum Chemistry, 2005, 102, 582-601.	2.0	39
186	Size and Shape Effects on Charge Recombination Dynamics of TiO ₂ Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 5201-5208.	3.1	39
187	Photoexcited Nonadiabatic Dynamics of Solvated Push–Pull π-Conjugated Oligomers with the NEXMD Software. Journal of Chemical Theory and Computation, 2018, 14, 3955-3966.	5.3	39
188	Edge Influence on Charge Carrier Localization and Lifetime in CH ₃ NH ₃ PbBr ₃ Perovskite: <i>Ab Initio</i> Quantum Dynamics Simulation. Journal of Physical Chemistry Letters, 2020, 11, 9100-9109.	4.6	39
189	Distinctive features of the biological catch bond in the jump-ramp force regime predicted by the two-pathway model. Physical Review E, 2005, 72, 010903.	2.1	38
190	Multiple Exciton Generation in Small Si Clusters: A High-Level, Ab Initio Study. Journal of Physical Chemistry Letters, 2010, 1, 232-237.	4.6	38
191	Excited states and optical absorption of small semiconducting clusters: Dopants, defects and charging. Chemical Science, 2011, 2, 400.	7.4	38
192	Dimensionality of Nanoscale TiO ₂ Determines the Mechanism of Photoinduced Electron Injection from a CdSe Nanoparticle. Nano Letters, 2014, 14, 1790-1796.	9.1	38
193	Photoinduced Conductivity of a Porphyrinâ^'Gold Composite Nanowire. Journal of Physical Chemistry A, 2009, 113, 4549-4556.	2.5	37
194	Ab Initio Analysis of Auger-Assisted Electron Transfer. Journal of Physical Chemistry Letters, 2015, 6, 244-249.	4.6	37
195	Laser-Induced Explosion of Nitrated Carbon Nanotubes: Nonadiabatic and Reactive Molecular Dynamics Simulations. Journal of the American Chemical Society, 2016, 138, 15927-15934.	13.7	36
196	Understanding divergent behaviors in the photocatalytic hydrogen evolution reaction on CdS and ZnS: a DFT based study. Physical Chemistry Chemical Physics, 2016, 18, 16862-16869.	2.8	36
197	Strain Controls Charge Carrier Lifetimes in Monolayer WSe ₂ : Ab Initio Time Domain Analysis. Journal of Physical Chemistry Letters, 2019, 10, 7732-7739.	4.6	36
198	Anti-correlation between Band gap and Carrier Lifetime in Lead Halide Perovskites under Compression Rationalized by Ab Initio Quantum Dynamics. Chemistry of Materials, 2020, 32, 4707-4715.	6.7	36

#	Article	IF	CITATIONS
199	Perturbed ground state method for electron transfer. Journal of Chemical Physics, 1999, 111, 7818-7827.	3.0	35
200	Enhanced Activity of C ₂ N-Supported Single Co Atom Catalyst by Single Atom Promoter. Journal of Physical Chemistry Letters, 2019, 10, 7009-7014.	4.6	35
201	Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule Composites: Atomistic Quantum Dynamics. Journal of the American Chemical Society, 2021, 143, 6649-6656.	13.7	35
202	Temperature dependence of hot-carrier relaxation in PbSe nanocrystals: An <i>ab initio</i> study. Physical Review B, 2009, 79, .	3.2	34
203	Exposing the Dynamics and Energetics of the N-Heterocyclic Carbene–Nanocrystal Interface. Journal of the American Chemical Society, 2016, 138, 14844-14847.	13.7	34
204	Effect of Aspect Ratio on Multiparticle Auger Recombination in Single-Walled Carbon Nanotubes: Time Domain Atomistic Simulation. Nano Letters, 2018, 18, 58-63.	9.1	34
205	Coexistence of Different Charge-Transfer Mechanisms in the Hot-Carrier Dynamics of Hybrid Plasmonic Nanomaterials. Nano Letters, 2019, 19, 3187-3193.	9.1	34
206	First-Principles Prediction of Two-Dimensional B ₃ C ₂ P ₃ and B ₂ C ₄ P ₂ : Structural Stability, Fundamental Properties, and Renewable Energy Applications. Journal of Physical Chemistry Letters, 2021, 12, 3436-3442.	4.6	34
207	Synthesis and spectral-luminescent characteristics of N-substituted 1,8-naphthalimides. Dyes and Pigments, 2007, 72, 42-46.	3.7	33
208	Shape and Temperature Dependence of Hot Carrier Relaxation Dynamics in Spherical and Elongated CdSe Quantum Dots. Journal of Physical Chemistry C, 2011, 115, 11400-11406.	3.1	33
209	Exciton Multiplication from First Principles. Accounts of Chemical Research, 2013, 46, 1280-1289.	15.6	33
210	Second-Quantized Surface Hopping. Physical Review Letters, 2014, 113, 153003.	7.8	33
211	Bidentate Lewis bases are preferred for passivation of MAPbI3 surfaces: A time-domain ab initio analysis. Nano Energy, 2021, 79, 105491.	16.0	33
212	Time-Domain Ab Initio Study of Nonradiative Decay in a Narrow Graphene Ribbon. Journal of Physical Chemistry C, 2009, 113, 14067-14070.	3.1	32
213	<i>Ab initio</i> study of phonon-induced dephasing of plasmon excitations in silver quantum dots. Physical Review B, 2010, 81, .	3.2	32
214	Ionic Vapor: What Does It Consist Of?. Journal of Physical Chemistry Letters, 2012, 3, 1657-1662.	4.6	32
215	Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment. Nano Letters, 2015, 15, 4274-4281.	9.1	32
216	Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite. Scientific Reports, 2018, 8, 8115.	3.3	32

#	Article	lF	CITATIONS
217	Strong Influence of Oxygen Vacancy Location on Charge Carrier Losses in Reduced TiO ₂ Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 2676-2683.	4.6	32
218	Electron-nuclear correlations for photo-induced dynamics in molecular dimers. Journal of Chemical Physics, 2004, 120, 11209-11223.	3.0	31
219	Fast Energy Relaxation by Trap States Decreases Electron Mobility in TiO2 Nanotubes: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2014, 5, 1642-1647.	4.6	31
220	Buckybomb: Reactive Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2015, 6, 913-917.	4.6	31
221	Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping. Journal of Chemical Physics, 2016, 144, 211102.	3.0	31
222	Boron doping of graphene–pushing the limit. Nanoscale, 2016, 8, 15521-15528.	5.6	31
223	Quantum Dynamics of Photogenerated Charge Carriers in Hybrid Perovskites: Dopants, Grain Boundaries, Electric Order, and Other Realistic Aspects. ACS Energy Letters, 2017, 2, 1588-1597.	17.4	31
224	Common Defects Accelerate Charge Carrier Recombination in CsSnI ₃ without Creating Mid-Gap States. Journal of Physical Chemistry Letters, 2021, 12, 8699-8705.	4.6	31
225	How Hole Injection Accelerates Both Ion Migration and Nonradiative Recombination in Metal Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 6604-6612.	13.7	31
226	Spin–orbit coupling and luminescence characteristics of conjugated organic molecules. I. Polyacenes. Computational and Theoretical Chemistry, 2002, 585, 49-59.	1.5	30
227	Exfoliation of Graphene in Ionic Liquids: Pyridinium versus Pyrrolidinium. Journal of Physical Chemistry C, 2017, 121, 911-917.	3.1	30
228	Strong Modulation of Band Gap, Carrier Mobility and Lifetime in Two-Dimensional Black Phosphorene through Acoustic Phonon Excitation. Journal of Physical Chemistry Letters, 2021, 12, 3960-3967.	4.6	30
229	The twist angle has weak influence on charge separation and strong influence on recombination in the MoS ₂ /WS ₂ bilayer: <i>ab initio</i> quantum dynamics. Journal of Materials Chemistry A, 2022, 10, 8324-8333.	10.3	30
230	A quantum-classical bracket that satisfies the Jacobi identity. Journal of Chemical Physics, 2006, 124, 201104.	3.0	29
231	Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination. Journal of Physics Condensed Matter, 2012, 24, 363201.	1.8	29
232	Communication: Global flux surface hopping in Liouville space. Journal of Chemical Physics, 2015, 143, 191102.	3.0	29
233	Atomistic Analysis of Room Temperature Quantum Coherence in Two-Dimensional CdSe Nanostructures. Nano Letters, 2017, 17, 2389-2396.	9.1	29
234	Superatom Molecular Orbital as an Interfacial Charge Separation State. Journal of Physical Chemistry Letters, 2018, 9, 3485-3490.	4.6	29

#	Article	IF	CITATIONS
235	Modeling Auger Processes with Nonadiabatic Molecular Dynamics. Nano Letters, 2021, 21, 756-761.	9.1	29
236	Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks. Journal of Physical Chemistry Letters, 2021, 12, 6070-6077.	4.6	29
237	Suppressing Oxygen-Induced Deterioration of Metal Halide Perovskites by Alkaline Earth Metal Doping: A Quantum Dynamics Study. Journal of the American Chemical Society, 2022, 144, 5543-5551.	13.7	29
238	Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals. Nano Letters, 2015, 15, 6875-6882.	9.1	28
239	Microwave reduction of graphene oxide rationalized by reactive molecular dynamics. Nanoscale, 2017, 9, 4024-4033.	5.6	28
240	Catalytic Chemistry Predicted by a Charge Polarization Descriptor: Synergistic O ₂ Activation and CO Oxidation by Au–Cu Bimetallic Clusters on TiO ₂ (101). ACS Applied Materials & Interfaces, 2019, 11, 9629-9640.	8.0	28
241	Efficient passivation of DY center in CH3NH3PbBr3 by chlorine: Quantum molecular dynamics. Nano Research, 2022, 15, 2112-2122.	10.4	28
242	Charging Quenches Multiple Exciton Generation in Semiconductor Nanocrystals: First-Principles Calculations on Small PbSe Clusters. Journal of Physical Chemistry C, 2009, 113, 12617-12621.	3.1	27
243	Upward Shift in Conduction Band of Ta2O5 Due to Surface Dipoles Induced by N-Doping. Journal of Physical Chemistry C, 2015, 119, 26925-26936.	3.1	27
244	Mixed quantum-classical equilibrium in global flux surface hopping. Journal of Chemical Physics, 2015, 142, 224102.	3.0	27
245	Theoretical Investigation of Relaxation Dynamics in Au ₃₈ (SH) ₂₄ Thiolate-Protected Gold Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 16380-16388.	3.1	27
246	<i>Ab initio</i> quantum dynamics of charge carriers in graphitic carbon nitride nanosheets. Journal of Chemical Physics, 2020, 153, 054701.	3.0	27
247	Atomic fluctuations in electronic materials revealed by dephasing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11940-11946.	7.1	27
248	Weak Distance Dependence of Hot-Electron-Transfer Rates at the Interface between Monolayer MoS ₂ and Gold. ACS Nano, 2021, 15, 819-828.	14.6	27
249	Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer. Computational and Theoretical Chemistry, 2003, 630, 33-43.	1.5	26
250	Quantum dynamics origin of high photocatalytic activity of mixed-phase anatase/rutile TiO2. Journal of Chemical Physics, 2020, 153, 044706.	3.0	26
251	Atomistic Mechanism of Passivation of Halide Vacancies in Lead Halide Perovskites by Alkali Ions. Chemistry of Materials, 2021, 33, 1285-1292.	6.7	26
252	Dependence between Structural and Electronic Properties of CsPbI ₃ : Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 8672-8678.	4.6	26

#	Article	IF	CITATIONS
253	Allosteric role of the large-scale domain opening in biological catch-binding. Physical Review E, 2009, 79, 051913.	2.1	25
254	Quantized Hamiltonian dynamics captures the low-temperature regime of charge transport in molecular crystals. Journal of Chemical Physics, 2013, 139, 174109.	3.0	25
255	Electron Solvation in Liquid Ammonia: Lithium, Sodium, Magnesium, and Calcium as Electron Sources. Journal of Physical Chemistry B, 2016, 120, 2500-2506.	2.6	25
256	Strong Influence of Ti Adhesion Layer on Electron–Phonon Relaxation in Thin Gold Films: Ab Initio Nonadiabatic Molecular Dynamics. ACS Applied Materials & Interfaces, 2017, 9, 43343-43351.	8.0	25
257	Ultrafast, asymmetric charge transfer and slow charge recombination in porphyrin/CNT composites demonstrated by time-domain atomistic simulation. Nanoscale, 2018, 10, 12683-12694.	5.6	25
258	Mean-field theory of acentric order of chromophores with displaced dipoles. Chemical Physics Letters, 2001, 340, 328-335.	2.6	24
259	Analysis of multiconfigurational wave functions in terms of hole-particle distributions. Journal of Chemical Physics, 2006, 124, 224109.	3.0	23
260	Synergistic Amination of Graphene: Molecular Dynamics and Thermodynamics. Journal of Physical Chemistry Letters, 2015, 6, 4397-4403.	4.6	23
261	Electron–phonon coupling and related transport properties of metals and intermetallic alloys from first principles. Materials Today Physics, 2020, 12, 100175.	6.0	23
262	Net Unidirectional Fluid Transport in Locally Heated Nanochannel by Thermo-osmosis. Nano Letters, 2020, 20, 8965-8971.	9.1	23
263	The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots. Journal of Chemical Physics, 2012, 136, 064701.	3.0	22
264	MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI ₃ /CuSCN Heterojunction. Journal of Physical Chemistry Letters, 2020, 11, 4481-4489.	4.6	22
265	Charge carrier nonadiabatic dynamics in non-metal doped graphitic carbon nitride. Journal of Chemical Physics, 2022, 156, 094702.	3.0	22
266	CO Adsorbate Promotes Polaron Photoactivity on the Reduced Rutile TiO ₂ (110) Surface. Jacs Au, 2022, 2, 234-245.	7.9	22
267	The role of specific solvent modes in the non-radiative relaxation of an excess electron in methanol. Journal of Molecular Structure, 1999, 485-486, 545-554.	3.6	21
268	Energy Storage in Cubane Derivatives and Their Real-Time Decomposition: Computational Molecular Dynamics and Thermodynamics. ACS Energy Letters, 2016, 1, 189-194.	17.4	21
269	Temperature Dependence of Electron–Phonon Interactions in Gold Films Rationalized by Time-Domain Ab Initio Analysis. Journal of Physical Chemistry C, 2017, 121, 17488-17497.	3.1	21
270	Influence of Encapsulated Water on Luminescence Energy, Line Width, and Lifetime of Carbon Nanotubes: Time Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2018, 9, 4006-4013.	4.6	21

#	Article	IF	CITATIONS
271	Electron–Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2019, 10, 7179-7187.	4.6	21
272	Control of Charge Carrier Dynamics in Plasmonic Au Films by TiO _{<i>x</i>} Substrate Stoichiometry. Journal of Physical Chemistry Letters, 2020, 11, 1419-1427.	4.6	21
273	Point Defects in Two-Dimensional γ-Phosphorus Carbide. Journal of Physical Chemistry Letters, 2021, 12, 620-626.	4.6	21
274	Ultrafast charge transfer coupled to quantum proton motion at molecule/metal oxide interface. Science Advances, 2022, 8, .	10.3	21
275	A canonical averaging in the second-order quantized Hamilton dynamics. Journal of Chemical Physics, 2004, 121, 10967.	3.0	20
276	Dissociation of Biological Catch-Bond by Periodic Perturbation. Biophysical Journal, 2006, 91, L19-L21.	0.5	20
277	Theoretical Insights into the Impact of Ru Catalyst Anchors on the Efficiency of Photocatalytic CO ₂ Reduction on Ta ₂ O ₅ . Journal of Physical Chemistry B, 2015, 119, 7186-7197.	2.6	20
278	Fragment Molecular Orbital Nonadiabatic Molecular Dynamics for Condensed Phase Systems. Journal of Physical Chemistry A, 2016, 120, 7205-7212.	2.5	20
279	Time-Domain ab Initio Modeling of Electron–Phonon Relaxation in High-Temperature Cuprate Superconductors. Journal of Physical Chemistry Letters, 2017, 8, 193-198.	4.6	20
280	Hot Electron Thermoreflectance Coefficient of Gold during Electron–Phonon Nonequilibrium. ACS Photonics, 2018, 5, 4880-4887.	6.6	20
281	First-principles determination of the ultrahigh electrical and thermal conductivity in free-electron metals via pressure tuning the electron-phonon coupling factor. Physical Review B, 2019, 99, .	3.2	20
282	Canonical averaging in the second order quantized Hamilton dynamics by extension of the coherent state thermodynamics of the harmonic oscillator. Journal of Chemical Physics, 2007, 126, 204108.	3.0	19
283	Dopant Effects on Single and Multiple Excitons in Small Si Clusters: High-Level Ab Initio Calculations. Journal of Physical Chemistry C, 2011, 115, 10006-10011.	3.1	19
284	Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO ₂ Nanobelt. Journal of Physical Chemistry C, 2015, 119, 5639-5647.	3.1	19
285	Second-order quantized Hamilton dynamics coupled to classical heat bath. Journal of Chemical Physics, 2005, 122, 234109.	3.0	18
286	Haber Process Made Efficient by Hydroxylated Graphene: Ab Initio Thermochemistry and Reactive Molecular Dynamics. Journal of Physical Chemistry Letters, 2016, 7, 2622-2626.	4.6	18
287	Extending Carrier Lifetimes in Lead Halide Perovskites with Alkali Metals by Passivating and Eliminating Halide Interstitial Defects. Angewandte Chemie, 2020, 132, 4714-4720.	2.0	18
288	Thermal smearing in DFT calculations: How small is really small? A case of La and Lu atoms adsorbed on graphene. Materials Today Communications, 2020, 25, 101595.	1.9	18

#	Article	IF	CITATIONS
289	Ag–Bi Charge Redistribution Creates Deep Traps in Defective Cs ₂ AgBiBr ₆ : Machine Learning Analysis of Density Functional Theory. Journal of Physical Chemistry Letters, 2022, 13, 3645-3651.	4.6	18
290	Electron-Volt Fluctuation of Defect Levels in Metal Halide Perovskites on a 100 ps Time Scale. Journal of Physical Chemistry Letters, 2022, 13, 5946-5952.	4.6	18
291	Isomerization ofall-trans-9- and 13-Desmethylretinol by Retinal Pigment Epithelial Cellsâ€. Biochemistry, 1999, 38, 13542-13550.	2.5	17
292	Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials. Physical Review E, 2000, 62, 8324-8334.	2.1	17
293	Quantum interference by non-interacting classical trajectories evolving on a quasi-classical potential. Chemical Physics Letters, 2003, 378, 533-538.	2.6	17
294	Non-nuclear attractors on Si–Si bond in quantum-chemical modeling as basis set inadequacy. Chemical Physics, 2003, 288, 159-169.	1.9	17
295	Correlation functions in quantized Hamilton dynamics and quantal cumulant dynamics. Journal of Chemical Physics, 2008, 129, 144104.	3.0	17
296	Atomistic Simulation Combined with Analytic Theory To Study the Response of the P-Selectin/PSGL-1 Complex to an External Force. Journal of Physical Chemistry B, 2009, 113, 2090-2100.	2.6	17
297	Phonon-induced pure-dephasing of luminescence, multiple exciton generation, and fission in silicon clusters. Journal of Chemical Physics, 2013, 139, 164303.	3.0	17
298	Control of Carbon Nanotube Electronic Properties by Lithium Cation Intercalation. Journal of Physical Chemistry Letters, 2014, 5, 4129-4133.	4.6	17
299	Exploding Nitromethane in Silico, in Real Time. Journal of Physical Chemistry Letters, 2014, 5, 3415-3420.	4.6	17
300	Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis. Nanoscale, 2015, 7, 17055-17062.	5.6	17
301	Analysis of the Trajectory Surface Hopping Method from the Markov State Model Perspective. Journal of the Physical Society of Japan, 2015, 84, 094002.	1.6	17
302	Numerical tests of coherence-corrected surface hopping methods using a donor-bridge-acceptor model system. Journal of Chemical Physics, 2019, 150, 194104.	3.0	17
303	Identifying and Passivating Killer Defects in Pb-Free Double Cs ₂ AgBiBr ₆ Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 10581-10588.	4.6	17
304	Computationally Efficient Prediction of Ionic Liquid Properties. Journal of Physical Chemistry Letters, 2014, 5, 1973-1977.	4.6	16
305	Time-Domain Ab Initio Simulation of Energy Transfer in Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 12088-12094.	3.1	16
306	Slow Relaxation of Surface Plasmon Excitations in Au ₅₅ : The Key to Efficient Plasmonic Heating in Au/TiO ₂ . Journal of Physical Chemistry Letters, 2016, 7, 1563-1569.	4.6	16

#	Article	IF	CITATIONS
307	Persistent Quantum Coherence and Strong Coupling Enable Fast Electron Transfer across the CdS/TiO ₂ Interface: A Time-Domain ab Initio Simulation. Journal of Physical Chemistry C, 2018, 122, 25606-25616.	3.1	16
308	Excited State Dynamics in Dual-Defects Modified Graphitic Carbon Nitride. Journal of Physical Chemistry Letters, 2022, 13, 1033-1041.	4.6	16
309	Structure and properties of hydrogen bonded complexes of pyridine-N-oxide and its derivatives. Journal of Molecular Structure, 1999, 510, 69-83.	3.6	15
310	A model of phase transitions in the system of electro-optical dipolar chromophores subject to an electric field. Journal of Chemical Physics, 2002, 117, 3354-3360.	3.0	15
311	Molecular dynamics study of aqueous solvation dynamics following OCIO photoexcitation. Journal of Chemical Physics, 2003, 118, 4563-4572.	3.0	15
312	Molecular dynamics study of the weakly solvent dependent relaxation dynamics following chlorine dioxide photoexcitation. Journal of Chemical Physics, 2003, 119, 9111-9120.	3.0	15
313	Electronic Properties of Carbon Nanotubes Intercalated with Li+ and Mg2+: Effects of Ion Charge and Ion Solvation. Journal of Physical Chemistry C, 2016, 120, 26514-26521.	3.1	15
314	Excited-State Properties of Defected Halide Perovskite Quantum Dots: Insights from Computation. Journal of Physical Chemistry Letters, 2021, 12, 1005-1011.	4.6	15
315	Approximation of RRKM Falloff Behavior by Interpolation Formulas. The Journal of Physical Chemistry, 1995, 99, 8633-8637.	2.9	14
316	Molecular structure and electric properties of some pyridine and pyridine-N-oxide derivatives. Journal of Molecular Structure, 1998, 471, 127-137.	3.6	14
317	Overcoming excitonic bottleneck in organic solar cells: electronic structure and spectra of novel semiconducting donor–acceptor block copolymers. Physical Chemistry Chemical Physics, 2011, 13, 7630.	2.8	14
318	Formulation of quantized Hamiltonian dynamics in terms of natural variables. Journal of Chemical Physics, 2012, 137, 224115.	3.0	14
319	Photoinduced Dynamics in Carbon Nanotube Aggregates Steered by Dark Excitons. Journal of Physical Chemistry Letters, 2014, 5, 3872-3877.	4.6	14
320	lon Association in Aprotic Solvents for Lithium Ion Batteries Requires Discrete–Continuum Approach: Lithium Bis(oxalato)borate in Ethylene Carbonate Based Mixtures. Journal of Physical Chemistry C, 2016, 120, 16545-16552.	3.1	14
321	Thin Ti adhesion layer breaks bottleneck to hot hole relaxation in Au films. Journal of Chemical Physics, 2019, 150, 184701.	3.0	14
322	Chemically Switchable n-Type and p-Type Conduction in Bismuth Selenide Nanoribbons for Thermoelectric Energy Harvesting. ACS Nano, 2021, 15, 2791-2799.	14.6	14
323	Hole-particle characterization of coupled-cluster singles and doubles and related models. Journal of Chemical Physics, 2006, 125, 154106.	3.0	13
324	Infrared Spectral Signatures of Surface-Fluorinated Graphene: A Molecular Dynamics Study. Journal of Physical Chemistry Letters, 2012, 3, 246-250.	4.6	13

#	Article	IF	CITATIONS
325	Instability of tripositronium. Physical Review A, 2013, 87, .	2.5	13
326	Excited States of Positronic Lithium and Beryllium. Physical Review Letters, 2013, 111, 193401.	7.8	13
327	Polarization versus Temperature in Pyridinium Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 13940-13945.	2.6	13
328	Photoactive Excited States in Explosive Fe(II) Tetrazine Complexes: A Time-Dependent Density Functional Theory Study. Journal of Physical Chemistry C, 2016, 120, 28762-28773.	3.1	13
329	Cooperative enhancement of the nonlinear optical response in conjugated energetic materials: A TD-DFT study. Journal of Chemical Physics, 2017, 146, 114308.	3.0	13
330	Combining Lindblad Master Equation and Surface Hopping to Evolve Distributions of Quantum Particles. Journal of Physical Chemistry B, 2020, 124, 4326-4337.	2.6	13
331	Improved description of hematite surfaces by the SCAN functional. Journal of Chemical Physics, 2020, 152, 024706.	3.0	13
332	Prezhdo and Brooksby Reply:. Physical Review Letters, 2003, 90, .	7.8	12
333	Photoinduced Vibrational Coherence Transfer in Molecular Dimers. Journal of Physical Chemistry A, 2007, 111, 10212-10219.	2.5	12
334	Second-Order Langevin Equation in Quantized Hamilton Dynamics. Journal of the Physical Society of Japan, 2008, 77, 044001.	1.6	12
335	Analytic dynamics of the Morse oscillator derived by semiclassical closures. Journal of Chemical Physics, 2009, 130, 244111.	3.0	12
336	Vibrational Energy Transfer between Carbon Nanotubes and Liquid Water: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114, 4609-4614.	2.6	12
337	Distinct Infrared Spectral Signatures of the 1,2- and 1,4-Fluorinated Single-Walled Carbon Nanotubes: A Molecular Dynamics Study. Journal of Physical Chemistry Letters, 2010, 1, 1307-1311.	4.6	12
338	Ab initio phononâ€coupled nonadiabatic relaxation dynamics of [Au 25 (SH) 18] â^' clusters. Physica Status Solidi (B): Basic Research, 2016, 253, 458-462.	1.5	12
339	Large cale Programmable Synthesis of PbS Quantum Dots. ChemPhysChem, 2016, 17, 681-686.	2.1	12
340	Pb dimerization greatly accelerates charge losses in MAPbI3: Time-domain ab initio analysis. Journal of Chemical Physics, 2020, 152, 064707.	3.0	12
341	Chemical passivation of methylammonium fragments eliminates traps, extends charge lifetimes, and restores structural stability of CH3NH3PbI3 perovskite. Nano Research, 2022, 15, 4765-4772.	10.4	12
342	Sample shape influence on the antiferroelectric phase transitions in dipolar systems subject to an external field. Physical Review B, 2002, 65, .	3.2	11

#	Article	IF	CITATIONS
343	Dissipation of classical energy in nonlinear quantum systems. Journal of Chemical Physics, 2008, 128, 134107.	3.0	11
344	Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid. Journal of Physical Chemistry Letters, 2014, 5, 1623-1627.	4.6	11
345	Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers. Journal of Physics Condensed Matter, 2015, 27, 134208.	1.8	11
346	Decoherence Allows Model Reduction in Nonadiabatic Dynamics Simulations. Journal of Physical Chemistry A, 2015, 119, 8846-8853.	2.5	11
347	Influence of intrinsic defects on the structure and dynamics of the mixed Pb–Sn perovskite: first-principles DFT and NAMD simulations. Journal of Materials Chemistry A, 2021, 10, 234-244.	10.3	11
348	Weak Anharmonicity Rationalizes the Temperature-Driven Acceleration of Nonradiative Dynamics in Cu ₂ ZnSnS ₄ Photoabsorbers. ACS Applied Materials & Interfaces, 2021, 13, 61365-61373.	8.0	11
349	Significance of the Chemical Environment of an Element in Nonadiabatic Molecular Dynamics: Feature Selection and Dimensionality Reduction with Machine Learning. Journal of Physical Chemistry Letters, 2021, 12, 12026-12032.	4.6	11
350	Point Defects in Two-Dimensional Ruddlesden–Popper Perovskites Explored with Ab Initio Calculations. Journal of Physical Chemistry Letters, 2022, 13, 5213-5219.	4.6	11
351	Synthesis and scintillating efficiencies of 2,5-diarylthiazoles with intramolecular hydrogen bond. Tetrahedron Letters, 2004, 45, 5291-5294.	1.4	10
352	Watching electrons in real time. Nature Nanotechnology, 2008, 3, 190-191.	31.5	10
353	Decoherence reduces thermal energy loss in graphene quantum dots. Applied Physics Letters, 2013, 103,	3.3	10
354	Ionic Vapor Composition in Pyridinium-Based Ionic Liquids. Journal of Physical Chemistry B, 2016, 120, 4661-4667.	2.6	10
355	Real-Time Atomistic Dynamics of Energy Flow in an STM Setup: Revealing the Mechanism of Current-Induced Molecular Emission. Journal of Physical Chemistry Letters, 2018, 9, 3591-3597.	4.6	10
356	Dependence of electron transfer dynamics on the number of graphene layers in π-stacked 2D materials: insights from ab initio nonadiabatic molecular dynamics. Physical Chemistry Chemical Physics, 2019, 21, 23198-23208.	2.8	10
357	Why Hybrid Tin-Based Perovskites Simultaneously Improve the Structural Stability and Charge Carriers' Lifetime: Ab Initio Quantum Dynamics. ACS Applied Materials & Interfaces, 2021, 13, 16567-16575.	8.0	10
358	Discovery of a Wurtzite-like Cu ₂ FeSnSe ₄ Semiconductor Nanocrystal Polymorph and Implications for Related CuFeSe ₂ Materials. ACS Nano, 2021, 15, 13463-13474.	14.6	10
359	Anomalously Increased Lifetimes of Biological Complexes at Zero Force Due to the Proteinâ^'Water Interface. Journal of Physical Chemistry B, 2008, 112, 11440-11445.	2.6	9
360	Overcoming the Myths of the Review Process and Getting Your Paper Ready for Publication. Journal of Physical Chemistry Letters, 2014, 5, 896-899.	4.6	9

#	Article	IF	CITATIONS
361	Analysis of self-consistent extended Hückel theory (SC-EHT): a new look at the old method. Journal of Mathematical Chemistry, 2015, 53, 528-550.	1.5	9
362	Are Fluorination and Chlorination of Morpholinium-Based Ionic Liquids Favorable?. Journal of Physical Chemistry B, 2015, 119, 9920-9924.	2.6	9
363	Electron–Phonon Relaxation at Au/Ti Interfaces Is Robust to Alloying: Ab Initio Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry C, 2019, 123, 22842-22850.	3.1	9
364	Size-Programmed Synthesis of PbSe Quantum Dots via Secondary Phosphine Chalcogenides. Chemistry of Materials, 2019, 31, 8301-8307.	6.7	9
365	Sharp-tip enhanced catalytic CO oxidation by atomically dispersed Pt ₁ /Pt ₂ on a raised graphene oxide platform. Journal of Materials Chemistry A, 2020, 8, 12485-12494.	10.3	9
366	Tuning charge transfer and recombination in exTTF/CNT nanohybrids by choice of chalcogen: A time-domain density functional analysis. Journal of Applied Physics, 2021, 129, .	2.5	9
367	Nonadiabatic molecular dynamics analysis of hybrid Dion–Jacobson 2D leads iodide perovskites. Applied Physics Letters, 2021, 119, .	3.3	9
368	Studies on proton acceptor ability of SOx-containing compounds. Journal of Molecular Structure, 1995, 356, 7-13.	3.6	8
369	Universal laws in the force-induced unraveling of biological bonds. Physical Review E, 2007, 75, 011905.	2.1	8
370	A new model of chemical bonding in ionic melts. Journal of Chemical Physics, 2012, 136, 164112.	3.0	8
371	Selective Excitation of Atomic-Scale Dynamics by Coherent Exciton Motion in the Non-Born–Oppenheimer Regime. Journal of Physical Chemistry Letters, 2013, 4, 4260-4266.	4.6	8
372	Ab Initio Molecular Dynamics of Dimerization and Clustering in Alkali Metal Vapors. Journal of Physical Chemistry A, 2016, 120, 4302-4306.	2.5	8
373	Analytic Modeling of Field Dependence of Charge Mobility and Applicability of the Concept of the Effective Transport Level to an Organic Dipole Glass. Journal of Physical Chemistry C, 2017, 121, 7776-7781.	3.1	8
374	Influence of tungsten doping on nonradiative electron–hole recombination in monolayer MoSe2 with Se vacancies. Journal of Chemical Physics, 2020, 153, 154701.	3.0	8
375	Soft Lattice and Defect Covalency Rationalize Tolerance of β sPbI ₃ Perovskite Solar Cells to Native Defects. Angewandte Chemie, 2020, 132, 6497-6503.	2.0	8
376	Band alignment and defects influence the electron–phonon heat transport mechanisms across metal interfaces. Applied Physics Letters, 2021, 118, .	3.3	8
377	Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Inverse Fast Fourier Transform. Journal of Physical Chemistry Letters, 2022, 13, 331-338.	4.6	8
378	Studies on the proton acceptor ability of phosphoryl compounds. Journal of Molecular Structure, 1996, 385, 137-144.	3.6	7

#	Article	IF	CITATIONS
379	Weyl representation of the permutation operators and exchange interaction. International Journal of Quantum Chemistry, 2004, 96, 474-482.	2.0	7
380	Regulation of Catch Binding by Allosteric Transitions. Journal of Physical Chemistry B, 2010, 114, 11866-11874.	2.6	7
381	Quantized Hamilton dynamics describes quantum discrete breathers in a simple way. Physical Review E, 2011, 84, 026616.	2.1	7
382	The spin-polarized extended Brueckner orbitals. Journal of Chemical Physics, 2011, 135, 094107.	3.0	7
383	Infrared Spectral Signatures of Multilayered Surface-Fluorinated Graphene: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2012, 116, 8343-8347.	3.1	7
384	Mixed Metals Slow Down Nonradiative Recombination in Saddle-Shaped Porphyrin Nanorings: A Time-Domain Atomistic Simulation. Journal of Physical Chemistry C, 2021, 125, 16620-16628.	3.1	7
385	Electric Polarization of Onsager Fluids. I. Dipole Polarization. 3. The Role of Universal Pairwise Interactions. Acta Physica Polonica A, 1995, 88, 419-434.	0.5	7
386	Generating Shear Flows without Moving Parts by Thermo-osmosis in Heterogeneous Nanochannels. Journal of Physical Chemistry Letters, 2021, 12, 10099-10105.	4.6	7
387	Electron–phonon relaxation at the Au/WSe ₂ interface is significantly accelerated by a Ti adhesion layer: time-domain <i>ab initio</i> analysis. Nanoscale, 2022, 14, 10514-10523.	5.6	7
388	Non-adiabatic molecular dynamics with quantum solvent effects. Computational and Theoretical Chemistry, 2003, 630, 45-58.	1.5	6
389	Soluteâ^'Solvent Interactions Determine the Effect of External Electric Field on the Intensity of Molecular Absorption Spectra. Journal of Physical Chemistry A, 2008, 112, 13263-13266.	2.5	6
390	Molecular structure and electrical properties of some phosphonates, phosphine-oxides and phosphates. Journal of Molecular Structure, 2009, 919, 146-153.	3.6	6
391	The Role of Intermolecular Interactions in the Electro-Optical Kerr Effect in Liquid Alkanes. Acta Physica Polonica A, 2005, 108, 429-447.	0.5	6
392	Impact of Composition Engineering on Charge Carrier Cooling in Hybrid Perovskites: Computational Insights. Journal of Materials Chemistry C, 0, , .	5.5	6
393	Comparative analysis of electron-phonon relaxation in a semiconducting carbon nanotube and a PbSe quantum dot. Pure and Applied Chemistry, 2008, 80, 1433-1448.	1.9	5
394	The Influence of the Rigidity of a Carbon Nanotube on the Structure and Dynamics of Confined Methanol. Journal of the Physical Society of Japan, 2010, 79, 064608.	1.6	5
395	Ab Initio Study of the Vibrational Signatures for the Covalent Functionalization of Graphene. Journal of Physical Chemistry C, 0, , 130917155202007.	3.1	5
396	Nonadditivity of Temperature Dependent Interactions in Inorganic Ionic Clusters. Journal of Physical Chemistry C, 2015, 119, 8974-8979.	3.1	5

#	Article	IF	CITATIONS
397	Ionic Vapor Composition in Critical and Supercritical States of Strongly Interacting Ionic Compounds. Journal of Physical Chemistry B, 2016, 120, 4302-4309.	2.6	5
398	Pressure-driven opening of carbon nanotubes. Nanoscale, 2016, 8, 6014-6020.	5.6	5
399	Two-Dimensional Linear Dichroism Spectroscopy for Identifying Protein Orientation and Secondary Structure Composition. Journal of Physical Chemistry Letters, 2017, 8, 1031-1037.	4.6	5
400	Electric Polarization of Onsager Fluids. II. Birefringence. 2. Molar Kerr Constants of Binary Solutions. Acta Physica Polonica A, 1994, 86, 327-332.	0.5	5
401	Electric Polarization of Onsager Fluids. II. Birefringence. 3. Role of Universal Pairwise Interactions. Acta Physica Polonica A, 1996, 89, 47-59.	0.5	5
402	Adsorption of Lanthanide Atoms on Graphene: Similar, Yet Different. Journal of Physical Chemistry Letters, 2022, 13, 6042-6047.	4.6	5
403	Conformational analysis of chloroalkyl derivatives of 1,4-naphthoquinone. Journal of Molecular Structure, 2000, 522, 71-77.	3.6	4
404	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 907-916.	0.8	4
405	<title>Non-adiabatic molecular dynamics simulation of the ultrafast electron transfer from a
molecular electron donor to the TiO<formula><inf><roman>2</roman></inf></formula>
acceptor</title> . , 2003, , .		4
406	Synthesis, properties, and molecular structure of nitro-substituted N-methyl-N-nitroanilines. Russian Journal of General Chemistry, 2006, 76, 64-75.	0.8	4
407	Deformation Model for Thioredoxin Catalysis of Disulfide Bond Dissociation by Force. Cellular and Molecular Bioengineering, 2009, 2, 255-263.	2.1	4
408	Vibrational Energy Transfer between Carbon Nanotubes and Nonaqueous Solvents: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2011, 115, 5260-5267.	2.6	4
409	Electrons take an unexpected turn. Nature Chemistry, 2012, 4, 8-10.	13.6	4
410	A simple model for prediction of dipole moments of isolated molecules. Journal of Molecular Structure, 2013, 1053, 141-149.	3.6	4
411	Molecular Photophysics under Shock Compression: Ab Initio Nonadiabatic Molecular Dynamics of Rhodamine Dye. Journal of Physical Chemistry C, 2018, 122, 13600-13607.	3.1	4
412	DFT study of the infrared and Raman spectra of photochromic Fulgide;		

#	Article	IF	CITATIONS
415	Dimensionality reduction in machine learning for nonadiabatic molecular dynamics: Effectiveness of elemental sublattices in lead halide perovskites. Journal of Chemical Physics, 2022, 156, 054110.	3.0	4
416	Synthesis of 2-chloroalkyl-1,4-naphthoquinones and their reactivity in the formation of autocomplexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 2465-2472.	3.9	3
417	Reply to "Comment on â€~A quantum-classical bracket that satisfies the Jacobi identity' ―[J. Chem. F 124, 201104 (2006)]. Journal of Chemical Physics, 2007, 126, 057102.	Phys. 3.0	3
418	Chapter 11 Ab initio simulations of photoinduced molecule-semiconductor electron transfer. Theoretical and Computational Chemistry, 2007, , 275-300.	0.4	3
419	Molecular polarizability anisotropy of some five-membered cyclic imides. Journal of Molecular Structure, 2011, 997, 20-29.	3.6	3
420	Herman–Kluk allows analysis of quantum discrete breathers in higher dimensional systems. Molecular Physics, 2012, 110, 837-844.	1.7	3
421	On viscosity of selected normal and associated liquids. Journal of Molecular Liquids, 2013, 182, 32-38.	4.9	3
422	Resolving multi-exciton generation by attosecond spectroscopy. Optics Express, 2014, 22, 26285.	3.4	3
423	Theory of solar energy materials. Journal of Physics Condensed Matter, 2015, 27, 130301.	1.8	3
424	Nonradiative Relaxation of Charge Carriers in GaN-InN Alloys: Insights from Nonadiabatic Molecular Dynamics. ACS Symposium Series, 2015, , 189-200.	0.5	3
425	Theory of Nonadiabatic Electron Dynamics in Nanomaterials. , 2015, , 1-20.		3
426	Electric Polarization of Onsager Fluids. I. Dipole Polarization. 1. Electric Moments of Free Molecules. Acta Physica Polonica A, 1993, 84, 253-258.	0.5	3
427	Electric Polarization of Onsager Fluids. II. Birefringence. 1. Kerr Constants of Pure Substances. Acta Physica Polonica A, 1994, 85, 797-804.	0.5	3
428	Application of the electro-optic Kerr effect to investigation of the intermolecular H-bond. Journal of Molecular Structure, 2000, 526, 115-130.	3.6	2
429	Molecular structure and electric properties of N -methyl- N -nitroaniline and its derivatives. Journal of Molecular Structure, 2001, 559, 321-330.	3.6	2
430	Nonequilibrium versus equilibrium molecular dynamics studies of solvation dynamics after photoexcitation of OCIO. Journal of Chemical Physics, 2007, 127, 164510.	3.0	2
431	Accurate and Efficient Quantum Chemistry by Locality of Chemical Interactions. Journal of Physical Chemistry Letters, 2014, 5, 4317-4318.	4.6	2
432	Why Did You Accept My Paper?. Journal of Physical Chemistry Letters, 2014, 5, 2443-2443.	4.6	2

#	Article	IF	CITATIONS
433	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	2.5	2
434	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	4.6	2
435	Ultrafast dynamics of photoinduced processes at surfaces and interfaces. , 2007, , 387-484.		2
436	Time-Domain Ab Initio Modeling of Charge and Exciton Dynamics in Nanomaterials. , 2015, , 353-392.		2
437	Effect of electronic interactions between double bonds on the conformational flexibility of 1,4-cyclohexadiene. Russian Chemical Bulletin, 1994, 43, 1587-1588.	1.5	1
438	Lidar determination of altitude profile of the refraction index in electro-optical monitoring of the Earth's atmosphere. Measurement: Journal of the International Measurement Confederation, 2005, 37, 251-259.	5.0	1
439	Control of Chemical Equilibrium by Solvent: A Basis for Teaching Physical Chemistry of Solutions. Journal of Chemical Education, 2007, 84, 1348.	2.3	1
440	Temperature dependence of hot carrier relaxation in PbSe nanocrystals: an ab initio study. , 2009, , .		1
441	Correction to "Time-Domain Ab Initio Study of Phonon-Induced Relaxation of Plasmon Excitations in a Silver Quantum Dotâ€: Journal of Physical Chemistry C, 2012, 116, 17306-17306.	3.1	1
442	Density of normal and associated liquids. Fluid Phase Equilibria, 2013, 342, 23-30.	2.5	1
443	Analysis of depolarization ratios of ClNO2 dissolved in methanol. Journal of Chemical Physics, 2014, 140, 014301.	3.0	1
444	Reaching Out with Physical Chemistry. Journal of Physical Chemistry Letters, 2016, 7, 103-104.	4.6	1
445	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	2.6	1
446	Triplet Excitons in Small Helium Clusters. Journal of Physical Chemistry A, 2019, 123, 6113-6122.	2.5	1
447	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	3.1	1
448	Facile Removal of Bulk Oxygen Vacancy Defects in Metal Oxides Driven by Hydrogen-Dopant Evaporation. Journal of Physical Chemistry Letters, 2021, 12, 9579-9583.	4.6	1
449	Analytic Model of Nonequilibrium Charge Transport in Disordered Organic Semiconductors with Combined Energy and Off-Diagonal Disorder. Journal of Physical Chemistry C, 2021, 125, 20230-20240.	3.1	1
450	Non-Adiabatic Molecular Dynamics and Quantum Solvent Effects. Progress in Theoretical Chemistry and Physics, 2003, , 339-359.	0.2	1

#	Article	IF	CITATIONS
451	Application of the Electro-Optical Kerr Effect in Physical-Chemical Analysis of Binary Systems. Acta Physica Polonica A, 2002, 101, 477-494.	0.5	1
452	Influence of intermolecular interactions on the heat of solvation of nonelectrolytes. Theoretical and Experimental Chemistry, 1991, 27, 66-71.	0.8	0
453	Proton Acceptor Ability of the Compounds Containing SO and SO ₂ Groups. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 417-418.	1.6	0
454	Intermolecular coupling influence on conformations of molecules in solution. Journal of Molecular Structure, 1994, 318, 243-250.	3.6	0
455	Determination of the Equilibrium Composition of the Product Mixture in the Reaction of Oxidizing Ammonolysis of Methane. Chemical Engineering and Technology, 2002, 25, 71.	1.5	0
456	Luminescence characteristics and structure of substituted 4-amino-N-aminonaphthalimids. Computational and Theoretical Chemistry, 2003, 626, 91-99.	1.5	0
457	Synthesis and Scintillating Efficiencies of 2,5-Diarylthiazoles with Intramolecular Hydrogen Bond ChemInform, 2004, 35, no.	0.0	0
458	Front Matter: Volume 7396. Proceedings of SPIE, 2009, , .	0.8	0
459	Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots. Proceedings of SPIE, 2010, , .	0.8	Ο
460	Vibronic Interactions in Semiconducting and Metallic Quantum Dots, Carbon Nanotubes, and Graphene Nanoribbons: Time-Domain Ab Initio Studies. , 2010, , .		0
461	Theoretical Models of the Biological Catch-Bond. Biophysical Journal, 2010, 98, 38a.	0.5	ο
462	A Modern Quantum Chemistry Sampler: From Algorithms for the Schrodinger Equation, to Medium Effects, to Large-Scale In Silico Molecule Design. Journal of Physical Chemistry Letters, 2011, 2, 2273-2274.	4.6	0
463	The Two-Pathway Model of the Biological Catch-Bond as a Limit of the Allosteric Model. Biophysical Journal, 2011, 100, 396a.	0.5	Ο
464	Microscopic Structure and Dynamics of Molecular Liquids and Electrolyte Solutions Confined by Carbon Nanotubes: Molecular Dynamics Simulations. , 2011, , .		0
465	Electrostatic View at the Interface. Journal of Physical Chemistry Letters, 2012, 3, 2386-2387.	4.6	Ο
466	Signatures of discrete breathers in coherent state quantum dynamics. Journal of Chemical Physics, 2013, 138, 054104.	3.0	0
467	A Prolific First Five Years. Journal of Physical Chemistry Letters, 2015, 6, 180-182.	4.6	Ο
468	Vapor-phase molar Kerr constant values from solution measurements. Journal of Molecular Structure, 2015, 1079, 258-265.	3.6	0

#	Article	IF	CITATIONS
469	The JPCL New Year's Editorial. Journal of Physical Chemistry Letters, 2017, 8, 41-41.	4.6	Ο
470	Perspective Collections in the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 5239-5239.	4.6	0
471	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3925-3925.	4.6	0
472	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3718-3719.	4.6	0
473	In the Limelight: Perspective Collections on Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 5688-5688.	4.6	0
474	Editorial: 2017 in Perspective. Journal of Physical Chemistry Letters, 2018, 9, 138-140.	4.6	0
475	JPCL: A Dynamic Journal with a Global Reach. Journal of Physical Chemistry Letters, 2019, 10, 113-114.	4.6	Ο
476	Photoexcitation Dynamics on the Nanoscale. Springer Series in Chemical Physics, 2007, , 5-30.	0.2	0
477	Temperature Dependence of Hot Carrier Relaxation in a PBSE Quantum Dot: An Ab Initio Study. , 2009, , .		0
478	Study of Interesting Length and Temperature Effect on Ultrafast Electron Relaxation in CdSe Nanorods. , 2012, , .		0
479	Electro-Optical Kerr Effect Measurements in Conducting Systems. Acta Physica Polonica A, 1999, 96, 341-352.	0.5	Ο
480	Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals. , 2016, , .		0
481	Theory of Nonadiabatic Electron Dynamics in Nanomaterials. , 2016, , 4086-4103.		0
482	Time-Domain Modeling of Excited State Dynamics in Halide Perovskites. , 0, , .		0
483	Excited-State Dynamics in Metal Halide Perovskites: A Theoretical Perspective. , 2021, , 1-54.		0