
Armira Azuar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856637/publications.pdf Version: 2024-02-01

Δρμιρα Δ711Αρ

#	Article	IF	CITATIONS
1	Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Science Advances, 2020, 6, eaax2285.	10.3	85
2	Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines, 2019, 7, 58.	4.4	50
3	Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A <i>Streptococcus</i> Vaccine Delivery. Journal of Medicinal Chemistry, 2021, 64, 2648-2658.	6.4	32
4	Complete protection by a single-dose skin patch–delivered SARS-CoV-2 spike vaccine. Science Advances, 2021, 7, eabj8065.	10.3	31
5	Cholic Acid-based Delivery System for Vaccine Candidates against Group A Streptococcus. ACS Medicinal Chemistry Letters, 2019, 10, 1253-1259.	2.8	23
6	Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus. Vaccines, 2021, 9, 499.	4.4	19
7	Poly(hydrophobic amino acid) Conjugates for the Delivery of Multiepitope Vaccine against Group A Streptococcus. Bioconjugate Chemistry, 2021, 32, 2307-2317.	3.6	8
8	Liposomes for the Delivery of Lipopeptide Vaccines. Methods in Molecular Biology, 2022, 2412, 295-307.	0.9	8
9	Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines, 2022, 10, 578.	4.4	7
10	Detection and Quantification of SARS-CoV-2 Receptor Binding Domain Neutralization by a Sensitive Competitive ELISA Assay. Vaccines, 2021, 9, 1493.	4.4	5
11	Peptide-Based Vaccine against SARS-CoV-2: Peptide Antigen Discovery and Screening of Adjuvant Systems. Pharmaceutics, 2022, 14, 856.	4.5	4
12	A Potent Vaccine Delivery System. Bio-protocol, 2021, 11, e3973.	0.4	2