Qi Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856608/publications.pdf

Version: 2024-02-01

		101384	74018
74	12,789	36	75
papers	citations	h-index	g-index
77	77	77	17676
, ,	,,	,,	17070
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Methylation-dependent and -independent roles of EZH2 synergize in CDCA8 activation in prostate cancer. Oncogene, 2022, 41, 1610-1621.	2.6	6
2	MACMIC Reveals A Dual Role of CTCF in Epigenetic Regulation of Cell Identity Genes. Genomics, Proteomics and Bioinformatics, 2021, 19, 140-153.	3.0	4
3	Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 660853.	1.8	20
4	A PRC2-independent function for EZH2 in regulating rRNA 2′-O methylation and IRES-dependent translation. Nature Cell Biology, 2021, 23, 341-354.	4.6	54
5	A pan-cancer transcriptome analysis of exitron splicing identifies novel cancer driver genes and neoepitopes. Molecular Cell, 2021, 81, 2246-2260.e12.	4.5	35
6	Robot-assisted laparoscopic retroperitoneal leiomyosarcoma resection with inferior vena cava graft replacement: a case report. Translational Andrology and Urology, 2021, 10, 2133-2139.	0.6	4
7	High SAA1 Expression Predicts Advanced Tumors in Renal Cancer. Frontiers in Oncology, 2021, 11, 649761.	1.3	13
8	LncGSEA: a versatile tool to infer lncRNA associated pathways from large-scale cancer transcriptome sequencing data. BMC Genomics, 2021, 22, 574.	1.2	2
9	Pharmacological Inhibition of Core Regulatory Circuitry Liquid–liquid Phase Separation Suppresses Metastasis and Chemoresistance in Osteosarcoma. Advanced Science, 2021, 8, e2101895.	5.6	27
10	Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression. Oncogene, 2020, 39, 6265-6285.	2.6	52
11	Long noncoding RNA SNHG12 indicates the prognosis of prostate cancer and accelerates tumorigenesis via sponging miRâ€133b. Journal of Cellular Physiology, 2020, 235, 1235-1246.	2.0	39
12	BMI1 is directly regulated by androgen receptor to promote castration-resistance in prostate cancer. Oncogene, 2020, 39, 17-29.	2.6	22
13	Editorial: Response and Resistance in Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2020, 10, 607298.	1.3	1
14	Antihistamine Drug Ebastine Inhibits Cancer Growth by Targeting Polycomb Group Protein EZH2. Molecular Cancer Therapeutics, 2020, 19, 2023-2033.	1.9	15
15	Broad genic repression domains signify enhanced silencing of oncogenes. Nature Communications, 2020, 11, 5560.	5.8	10
16	Machine learning uncovers cell identity regulator by histone code. Nature Communications, 2020, 11, 2696.	5.8	25
17	The Identification of Key Gene Expression Signature and Biological Pathways in Metastatic Renal Cell Carcinoma. Journal of Cancer, 2020, 11, 1712-1726.	1.2	5
18	IMPDH1/YB-1 Positive Feedback Loop Assembles Cytoophidia and Represents a Therapeutic Target in Metastatic Tumors. Molecular Therapy, 2020, 28, 1299-1313.	3.7	20

#	Article	IF	Citations
19	Targeting the KIF4A/AR Axis to Reverse Endocrine Therapy Resistance in Castration-resistant Prostate Cancer. Clinical Cancer Research, 2020, 26, 1516-1528.	3.2	34
20	TADsplimer reveals splits and mergers of topologically associating domains for epigenetic regulation of transcription. Genome Biology, 2020, 21, 84.	3.8	6
21	The Identification of Key Gene Expression Signature in Prostate Cancer. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 153-168.	0.4	3
22	ISG20 serves as a potential biomarker and drives tumor progression in clear cell renal cell carcinoma. Aging, 2020, 12, 1808-1827.	1.4	25
23	LINC00160 mediates sunitinib resistance in renal cell carcinoma via SAA1 that is implicated in STAT3 activation and compound transportation. Aging, 2020, 12, 17459-17479.	1.4	10
24	Impact of inflammation and immunotherapy in renal cell carcinoma (Review). Oncology Letters, 2020, 20, 1-1.	0.8	19
25	CYP17 inhibitors improve the prognosis of metastatic castration-resistant prostate cancer patients: A meta-analysis of published trials. Journal of Cancer Research and Therapeutics, 2020, 16, 990.	0.3	4
26	Identification of CXCL13 as a potential biomarker in clear cell renal cell carcinoma via comprehensive bioinformatics analysis. Biomedicine and Pharmacotherapy, 2019, 118, 109264.	2.5	30
27	RAC2 acts as a prognostic biomarker and promotes the progression of clear cell renal cell carcinoma. International Journal of Oncology, 2019, 55, 645-656.	1.4	20
28	Role of Autophagy in Renal Cancer. Journal of Cancer, 2019, 10, 2501-2509.	1.2	40
29	Melatonin/PGC1A/UCP1 promotes tumor slimming and represses tumor progression by initiating autophagy and lipid browning. Journal of Pineal Research, 2019, 67, e12607.	3.4	57
30	N6-Methyladenosine Modulates Nonsense-Mediated mRNA Decay in Human Glioblastoma. Cancer Research, 2019, 79, 5785-5798.	0.4	181
31	The Identification of Potential Biomarkers and Biological Pathways in Prostate Cancer. Journal of Cancer, 2019, 10, 1398-1408.	1.2	24
32	High expression of TAZ serves as a novel prognostic biomarker and drives cancer progression in renal cancer. Experimental Cell Research, 2019, 376, 181-191.	1.2	6
33	LXRα promotes cell metastasis by regulating the NLRP3 inflammasome in renal cell carcinoma. Cell Death and Disease, 2019, 10, 159.	2.7	30
34	Polycomb group proteins EZH2 and EED directly regulate androgen receptor in advanced prostate cancer. International Journal of Cancer, 2019, 145, 415-426.	2.3	51
35	The screening of pivotal gene expression signatures and biomarkers in renal carcinoma. Journal of Cancer, 2019, 10, 6384-6394.	1.2	3
36	B lymphoma Moloney murine leukemia virus insertion region 1: An oncogenic mediator in prostate cancer. Asian Journal of Andrology, 2019, 21, 224.	0.8	8

#	Article	IF	CITATIONS
37	BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1. Nature Communications, 2018, 9, 500.	5.8	65
38	Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Reports, 2018, 25, 2808-2820.e4.	2.9	201
39	RCAN1.4 acts as a suppressor of cancer progression and sunitinib resistance in clear cell renal cell carcinoma. Experimental Cell Research, 2018, 372, 118-128.	1.2	14
40	Overexpression of PLIN2 is a prognostic marker and attenuates tumor progression in clear cell renal cell carcinoma. International Journal of Oncology, 2018, 53, 137-147.	1.4	49
41	PLIN3 is up-regulated and correlates with poor prognosis in clear cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 343.e9-343.e19.	0.8	27
42	Calpain and AR-V7: Two potential therapeutic targets to overcome acquired docetaxel resistance in castration-resistant prostate cancer cells. Oncology Reports, 2017, 37, 3651-3659.	1.2	4
43	Enhanced expression of caveolin-1 possesses diagnostic and prognostic value and promotes cell migration, invasion and sunitinib resistance in the clear cell renal cell carcinoma. Experimental Cell Research, 2017, 358, 269-278.	1.2	30
44	Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma. Frontiers in Pharmacology, 2017, 8, 495.	1.6	48
45	The Long Non-Coding RNA PCAT-1 Promotes Prostate Cancer Cell Proliferation through cMyc. Neoplasia, 2014, 16, 900-908.	2.3	216
46	<i>PCAT-1</i> , a Long Noncoding RNA, Regulates BRCA2 and Controls Homologous Recombination in Cancer. Cancer Research, 2014, 74, 1651-1660.	0.4	237
47	The central role of EED in the orchestration of polycomb group complexes. Nature Communications, 2014, 5, 3127.	5.8	130
48	The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature Genetics, 2013, 45, 1392-1398.	9.4	601
49	Characterization of the EZH2-MMSET Histone Methyltransferase Regulatory Axis in Cancer. Molecular Cell, 2013, 49, 80-93.	4.5	130
50	Role of Transcriptional Corepressor CtBP1 in Prostate Cancer Progression. Neoplasia, 2012, 14, 905-IN8.	2.3	59
51	Role of dutasteride in preâ€clinical ETS fusionâ€positive prostate cancer models. Prostate, 2012, 72, 1542-1549.	1.2	13
52	Therapeutic Targeting of SPINK1-Positive Prostate Cancer. Science Translational Medicine, 2011, 3, 72ra17.	5.8	140
53	Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nature Biotechnology, 2011, 29, 742-749.	9.4	950
54	Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood, 2011, 117, 6172-6183.	0.6	132

#	Article	IF	CITATIONS
55	Mechanistic Rationale for Inhibition of Poly(ADP-Ribose) Polymerase in ETS Gene Fusion-Positive Prostate Cancer. Cancer Cell, 2011, 19, 664-678.	7.7	397
56	Coordinated Regulation of Polycomb Group Complexes through microRNAs in Cancer. Cancer Cell, 2011, 20, 187-199.	7.7	191
57	TMPRSS2–ERG-Mediated Feed-Forward Regulation of Wild-Type ERG in Human Prostate Cancers. Cancer Research, 2011, 71, 5387-5392.	0.4	42
58	Characterization of <i>KRAS</i> Rearrangements in Metastatic Prostate Cancer. Cancer Discovery, 2011, 1, 35-43.	7.7	91
59	Re: Florian Jentzmik, Carsten Stephan, Kurt Miller, et al. Sarcosine in Urine after Digital Rectal Examination Fails as a Marker in Prostate Cancer Detection and Identification of Aggressive Tumours. Eur Urol 2010;58:12–8. European Urology, 2010, 58, e29-e30.	0.9	17
60	An Integrated Network of Androgen Receptor, Polycomb, and TMPRSS2-ERG Gene Fusions in Prostate Cancer Progression. Cancer Cell, 2010, 17, 443-454.	7.7	743
61	Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature Medicine, 2010, 16, 793-798.	15.2	436
62	AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10284-10289.	3.3	140
63	Tomlins et al. reply. Nature, 2009, 457, E2-E3.	13.7	6
64	Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457, 910-914.	13.7	1,944
65	An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer. Nature Biotechnology, 2009, 27, 1005-1011.	9.4	69
66	The Role of SPINK1 in ETS Rearrangement-Negative Prostate Cancers. Cancer Cell, 2008, 13, 519-528.	7.7	303
67	Role of the TMPRSS2-ERG Gene Fusion in Prostate Cancer. Neoplasia, 2008, 10, 177-IN9.	2.3	608
68	Golgi Protein GOLM1 Is a Tissue and Urine Biomarker of Prostate Cancer. Neoplasia, 2008, 10, 1285-IN35.	2.3	89
69	Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer. Science, 2008, 322, 1695-1699.	6.0	995
70	Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 Gene Fusions in Prostate Cancer. Cancer Research, 2008, 68, 73-80.	0.4	244
71	Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature, 2007, 448, 595-599.	13.7	743
72	Integrative Genomics Analysis Reveals Silencing of β-Adrenergic Signaling by Polycomb in Prostate Cancer. Cancer Cell, 2007, 12, 419-431.	7.7	204

#	Article	IF	CITATIONS
73	The Polycomb Group Protein EZH2 Impairs DNA Repair in Breast Epithelial Cells. Neoplasia, 2005, 7, 1011-1019.	2.3	86
74	EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11606-11611.	3.3	1,482